

Final Workshop

Passive Sampler Intercomparison Exercise

- C. Miège, N. Mazzella, S. Schiavone, A. Dabrin, M. Coquery: Cemagref Lyon, Bordeaux
- C Berho, J-P Ghestem: BRGM Orleans
- J-L Gonzalez, D Munaron, C. Tixier: Ifremer La Seyne/Mer, Sète, Nantes
- B. Lalere, S. Lardy-Fontan: LNE Paris
- B. Lepot: INERIS Paris
- C. Gonzalez: EMA Ales

Géosciences pour une Terre durable

General aspects: Objectives, design, field campaigns

<u>C. Miège</u>, N. Mazzella, D. Munaron, C. Tixier, S. Lardy-Fontan, B. Lepot, S Schiavone, C Berho, JP Ghestem, M Coquery

The assessment of the potential role and efficiency of passive samplers for water pollutants measurements in surface and coastal water in the frame of the WFD:

- To evaluate the comparability and variability of measurements of selected priority substances with passive samplers
- To evaluate the suitability of these samplers implemented in different aquatic environments to sample selected substances
- To demonstrate the applicability of such tools to water basin managers and routine laboratories

Planning

- Year 1 (2009):
 - Constitution of an organisation committee
 - Configuration of the exercise
 - Prospection/searching for participants
- Year 2 (2010):
 - Realization of the 3 in situ campaigns
 - Centralisation of final results on the web site
- Year 3 (2011):
 - Data treatment
 - Valorisation and communication on the results (report to participants, conference at IPSW 2011, final workshop, final report for Aquaref, scientific papers)

PS not used in France by routine lab. for monitoring programs, (especially for continental waters)
 Precessity to limit to expert lab.

2/ Necessity to have enough data per tool/molecule/site for satisfying statistical data treatment (for evaluation of the TWAC and its uncertainty and comparison of various tools)
The evaluation of the statistical data treatment (for evaluation of the treatment (for evaluation of treatment (for evaluation of treatment (for evaluation of treatment (for

How to design the intercomparison exercise ? (2) scientifique

3/ None detailed guideline per PS, each expert lab. has its own sampling and analytical strategy (exposure conditions, analytical treatment, quality control, PRC, calculation of TWAC, ...) Choice to let expert lab. proceed as they are used to

4/ Some participants are very far away from the location of the in situ campaigns

They could either come and prepare their own PS before exposure or they send us the detailed procedure and let us prepare their own PS before exposure

How to design the intercomparison exercise ? (3)

5/ Choice of the molecules:

- Selection of priority molecules (WFD, OSPAR, good ecological status)
- Metals / Hydrophilic Organics / Hydrophobic Organics
- Selection of pesticide metabolites
- Detected in the selected sites
- Possible to be sampled by PS
- Possible to be analysed by central lab.

6/ Choice of the tools:

- Cover the most known tools: DGT, SPMD, POCIS
- Let the possibility for other tools to be compared (chemcatcher, SR, MESCO, ...)

7/ Choice of the sites:

- to test the influence of various physico-chemical field conditions for some tool/molecule/site @ marine and continental water sites
- In relatively contaminated area to be sure to quantify the studied pollutants
- Well known by organising lab.
- Easy to access, protected from vandalism

24 expert laboratories participated

11 national and 13 international lab. (Czech republic,

Germany, Italy, Netherlands, Norway, Slovakia, Spain, Sweden, United Kingdom, United States)

 AZTI-Foundation (ES), BRGM (FR), 	 Marine Scotland - Science (UK), NIVA (NO),
 Cefas (UK), Cemagref (FR), Deltares/TNO (NL), Ecole des Mines d'Alès (FR), EDF R&D/LNHE (FR), Environment Agency, National Laboratory Service (UK), IFREMER (FR), Labaqua (ES), ALS Scandinavia AB (SW), LEESU (FR), LPTC Bordeaux (FR), 	 T. G. Masaryk Water Research Institute, Public Research Institution (CZ), UFZ - Department of Ecological Chemistry, Helmholtz Centre for Environmental Research (DE), Universita di Cagliari (IT), University of Rhode Island (USA), Water Research Institute (SK)

Various tools and exposure systems

- Exposure system (cage or support): Commercially available or home made
- PS and main characteristics:

Substances	Tools and main characteristics		
	* DGT: binding agent (Chelex-100) with open pore or restrictive diffusive		
Metals	gels (thickness: 0.8 mm)		
	* Chemcatcher (metals)		
	* SPMD: standard, 460 cm2		
PAHs	* LDPE: from 390 to 490 cm2		
	* Chemcatcher (apolar), C18 : 15,9 and 17,4 cm2		
	* SR : 5, 160 et 600 cm2		
	* MESCO : LDPE membrane, silicone phase		
	* CFIS (PDMS)		
	* POCIS: both pesticide and pharmaceutical configurations		
Pesticides	* Chemcatchers (polar), C18, SDB-XC and SDB-RPS: 15,9 cm2		
	* SR: 5 cm2		
	* MESCO: cellulose membrane, silicone phase		

Various sampling and analytical procedures

- Quality controls (those not set by the organizers):
 - Laboratory PS blank or not
 - Internal surrogates or not
 - Correction from field blanks or not
- To calculate TWAC :
 - Rs for organic chemicals: From literature or determined by the participant
 - Various models applied
- Analytical procedures:
 - Metals: ICP-MS or GF/AAS
 - Organic: purification or not
 - ← GC-MS, GC/MS/MS or HPLC/MS/MS, HPLC/fluo
- PRC used or not

Target substances

N°11

• Metals (8) : Cd*‡, Ni*, Pb*‡, Zn[₽], Cu[₽], Mn, Co, Cr[₽]

PAHs (16 EPA): naphthalene*, acenaphtylene, acenaphthene, fluorene, phenanthrene‡, anthracene*‡, fluoranthene*‡, pyrene‡, benzo(a)anthracene‡, chrysene‡, benzo(b)fluoranthene*, benzo(a)pyrene*‡, benzo(k)fluoranthene*, benzo(ghi)perylene*‡, dibenzo(ah)anthracene, indeno(1,2,3-c,d)pyrene*‡

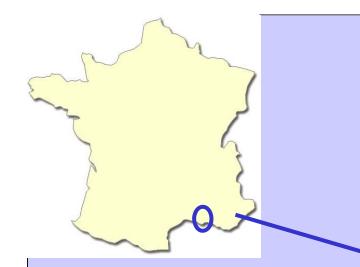
 Pesticides (9) : acetochlor, alachlor*, atrazine* and metabolites (DEA / DIA), diuron*, isoproturon*, simazine*, S-metolachlor

Priority molecules :	WFD*
	OSPAR ‡
	Good ecological status 阔

Exposure durations

Pesticides	PAHs	Metals	
• POCIS	 SPMD 	• DGT	
 SBSE 	• LDPE • Chemcatcher		
 Chemcatcher 	 Chemcatcher 		
• SR	 SR (PDMS sheet) 		
• MESCO	• MESCO		
	• CFIS		
🖛 14 days	🖛 21 days	🖛 7 days	

3 sampling sites



Coastal waters	Thau (Hérault) 27th April- 18th May 2010 Pesticides, PAHs and metals	
River waters	Beillant (Charente maritime) 27th May- 10th June 2010 Pesticides	
	Ternay (Rhône) 17th June- 8th July 2010 PAHs and metals	

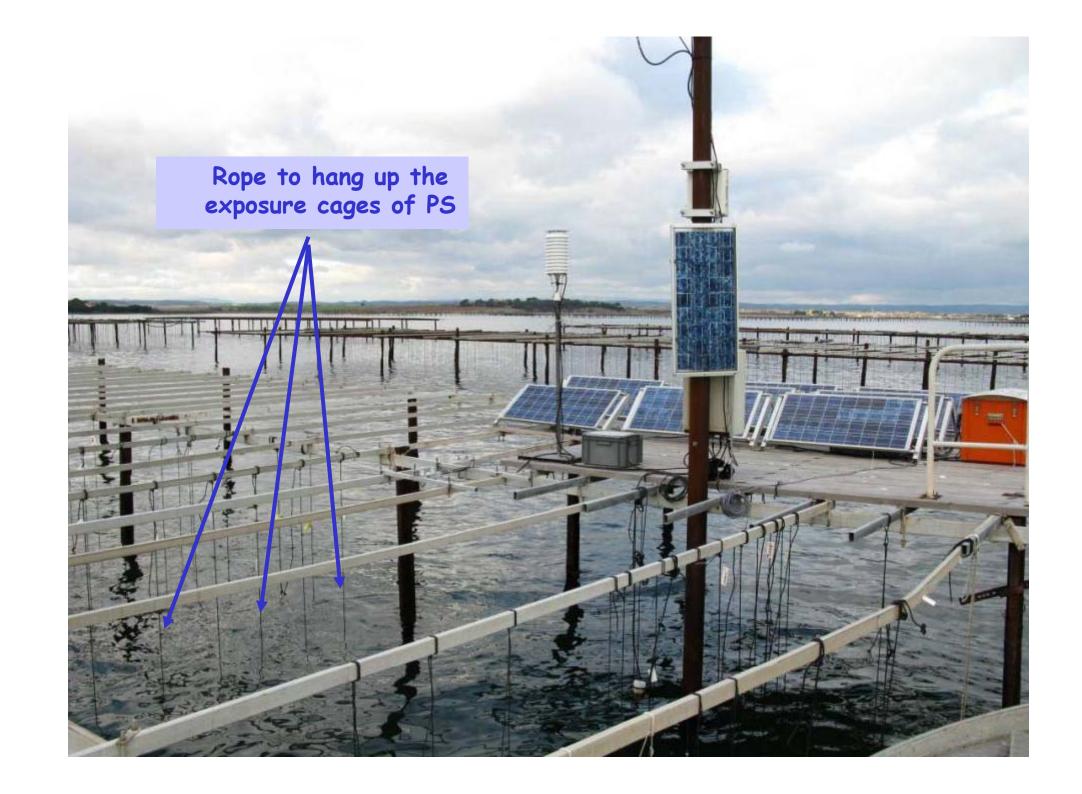
Thau site

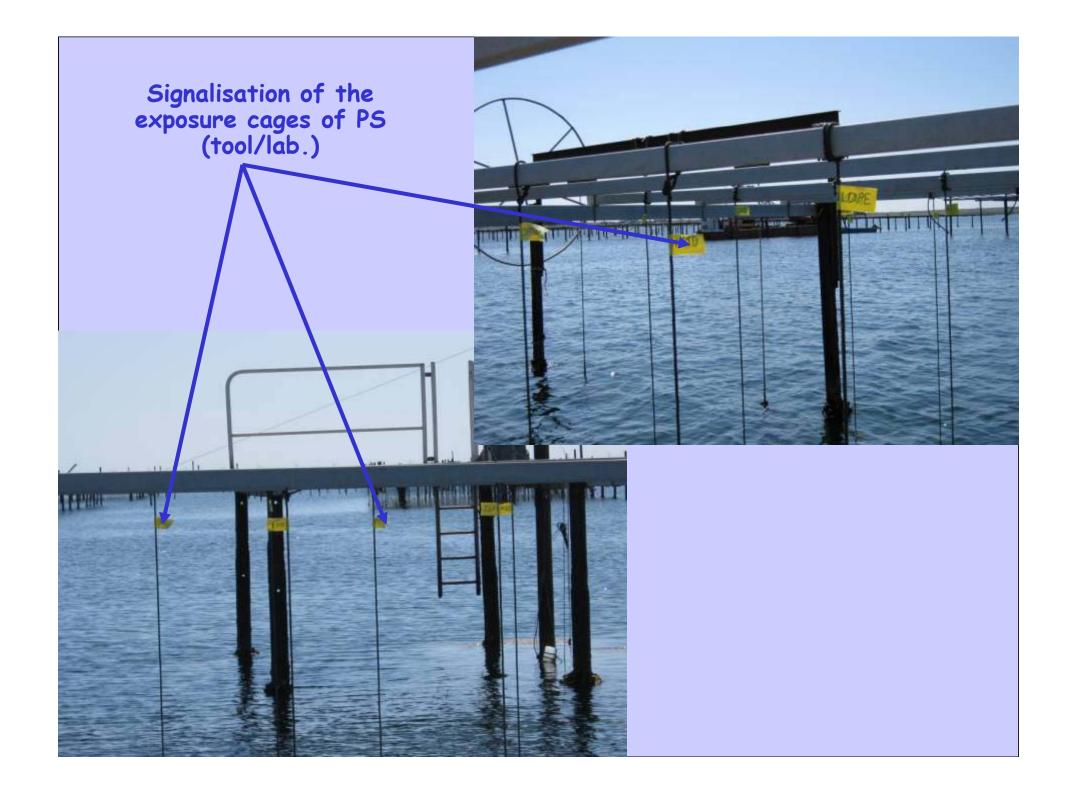
(Hérault, France)

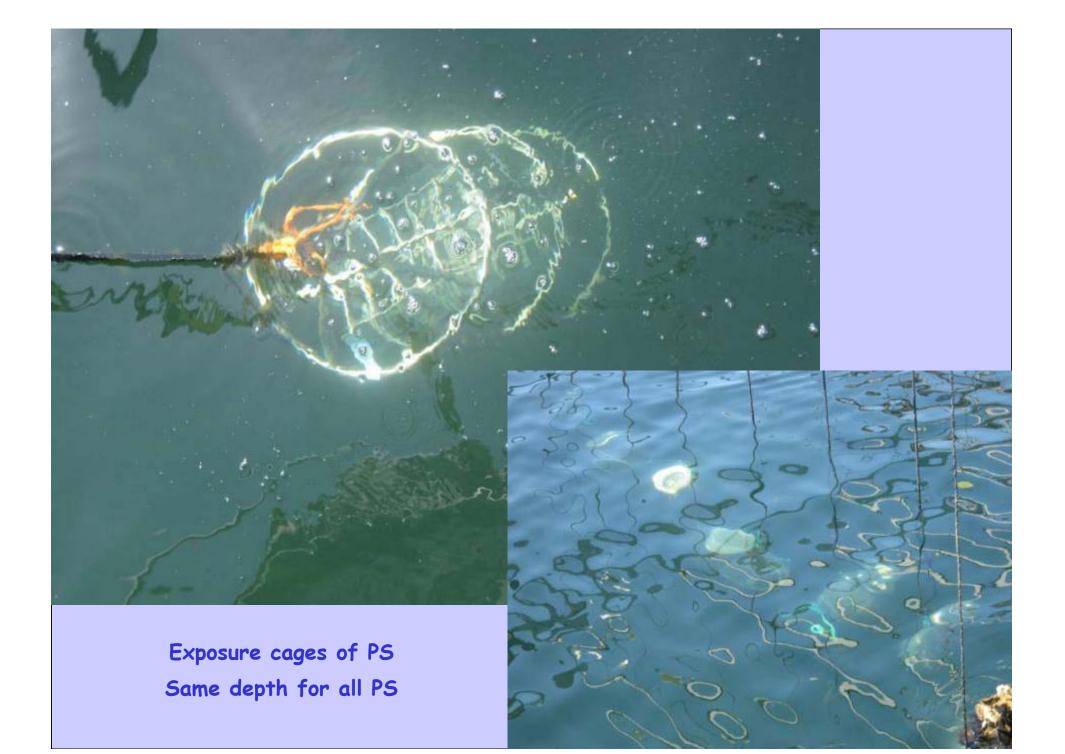
PAH, Pesticides, Metals

Thau lagoon: the second largest lake in France, 21 km long, 8 km wide, an area of 7 hectares, mean depth of 4.5 m, max depth of 30 m

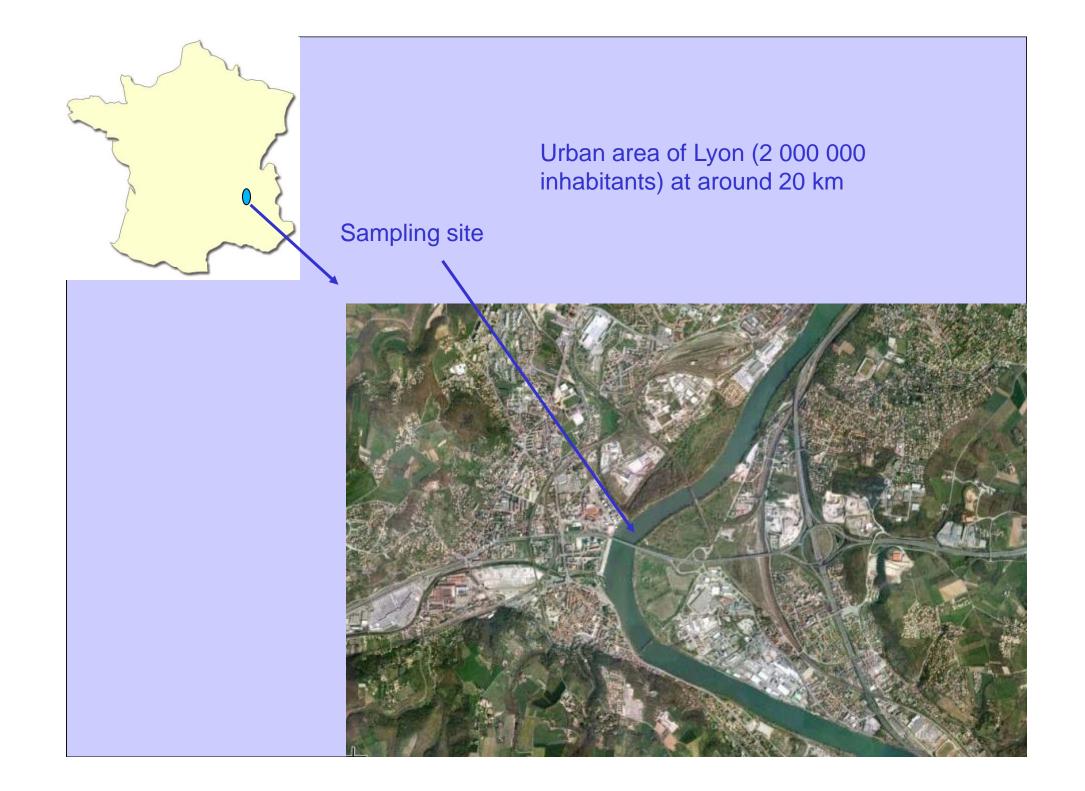
East borders largely industrial Northern side has villages dedicated to fishing and the production of shellfish

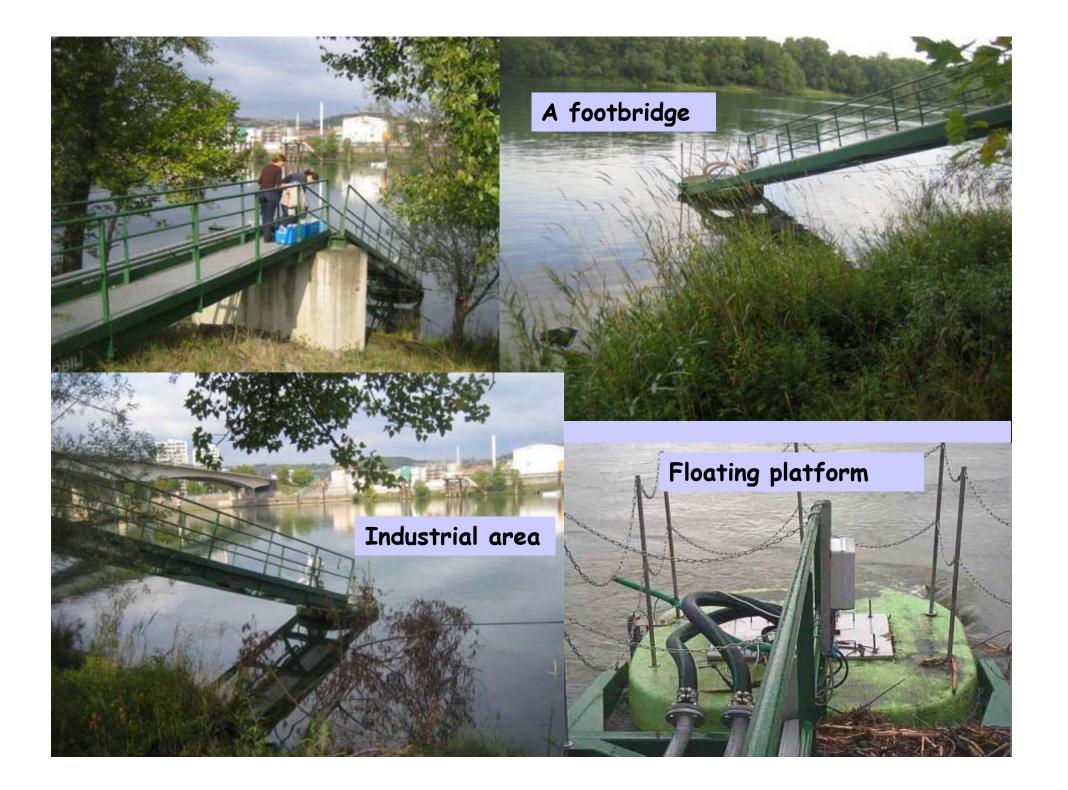


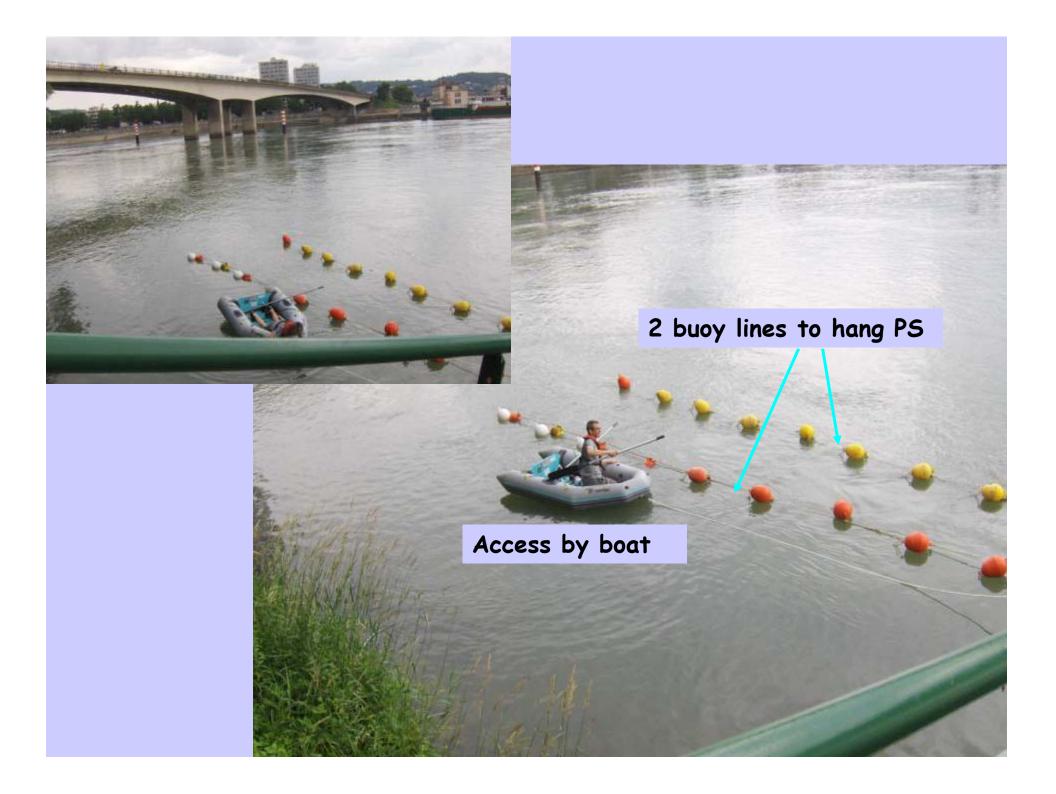



Thau site

- Lagoon waters : mean during exercice (usual annual ranges)
 - Temperature: 17.9°C (5-26°C)
 - Salinity: 37.6 PSU (34-39)
 - Suspended solids: 0.89 mg/L
 - Flow velocity: 1.59 cm/s
 - Micropollutants concentrations in the dissolved phase:
 - Metals: > 500ng/L for Ni and Cu, ~60 ng/L for Co, < 20 ng/L for the others</p>
 - pesticides and PAHs: < 3 ng/L</p>
- Preparation of the PS before exposure in laboratory (at 5.5 miles from the exposure site, by boat)
- Description of the exposure area:
 - former site of oyster farming surrounded with shelf farming tables in action
 - A monitoring site of the French mussel watch program (IFREMER)




Ternay site (south of Lyon, Rhône, France)


PAH and Metals

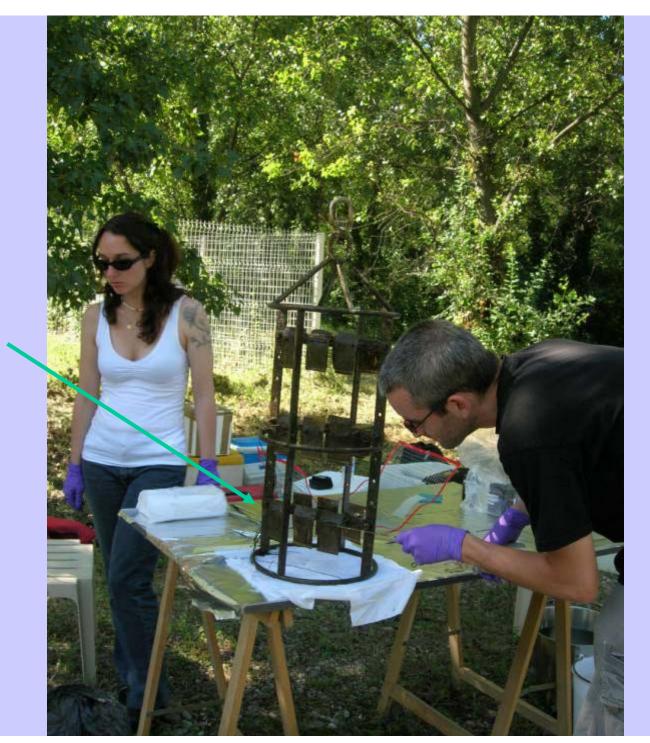
Ternay site

- Rhone river waters (mean ± sd on the 3 weeks campaign)
 - Suspended solids: 14,0 ± 12,1 mg/L (> Beillant > Thau)
 - Temperature: 19,8 ± 2,7 °C
 - Flow velocity: 0,217 ± 0,078 m/s (> Thau and Beillant)
 - Conductivity: 389 ± 28 μSm/cm
 - Micropollutants mean concentrations in dissolved phase: (Metals: from 13 ng/L for Cd to 3.6 µg/L for Mn; PAHs: < 5 ng/L)</p>
- Preparation of the PS for exposure directly in situ, near the river Rhone (not in laboratory)
- Description of the sampling site:
 - An urban (2 000 000 inhabitants) and industrial area. The great Lyon is known for its chemical industry located between Lyon and the sampling site.
 - A Rhone river measurement station
 - PS located near the river bank

Folding tables covered with aluminim foils

The exposure cages hanged to the buoy lines

Iropik


Commercially available exp. syst. for standard SPMD

Home-made exp. syst. for chemcatcher

Exp. syst. for SR

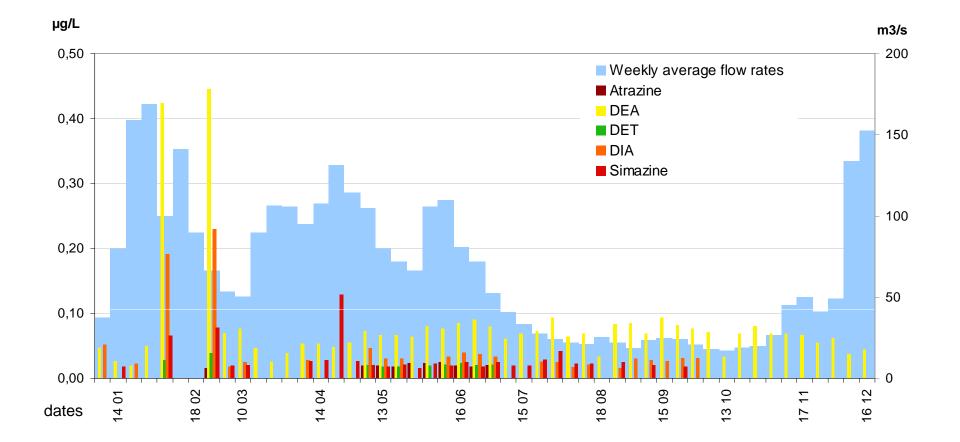
Beillant site (Charente maritime, France)

Pesticides

The watershed area is occupied by almost 80% of agricultural lands

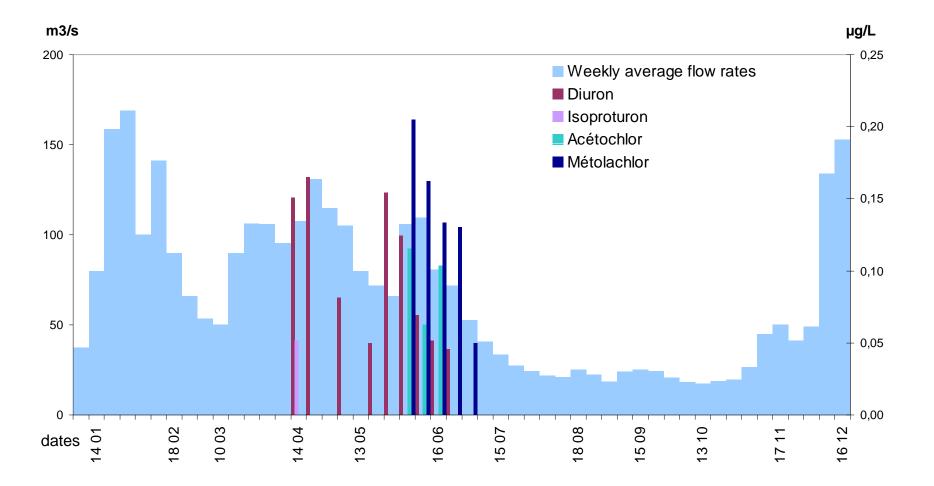
PS exposed in Charente river

376 km long, watershed of about 10 050 km² Mean annual flow of 68 m³.s⁻¹ (at Beillant, 2008)

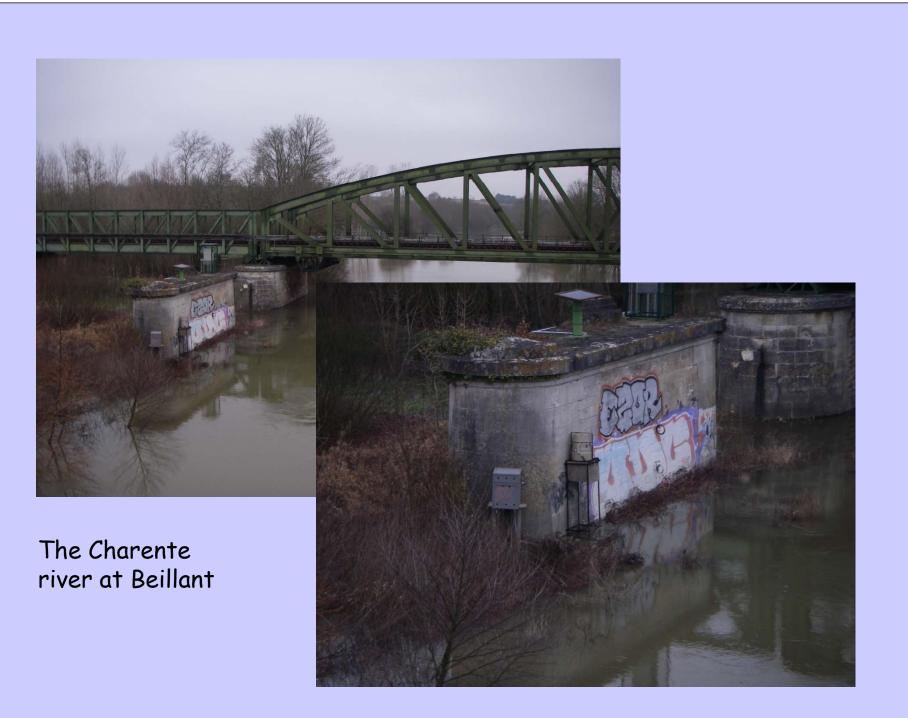

Beillant site

- Charente river waters (mean ± sd on the 2 weeks campaign) :
 - Suspended solids: 7 ± 0.7 mg/L
 - Temperature: 19.4 ± 1.1°C
 - Flow velocity: 0.01-0.02 m/s
 - Conductivity: 539.8 ± 10.8 μSm/cm
 - Pesticide mean concentrations in dissolved phase: 10 to 50 ng/L for DIA, MET, DEA, < LQ for others
- Preparation of the PS for exposure in laboratory (at 150 km from the exposure site)
- Description of the sampling site:
 - The watershed area is occupied by almost 80% of agricultural lands
 - A very well known site for Cemagref Bordeaux
 - PS located near the river bank

Triazine concentrations (2008)



Background levels and low fluctuations of concentrations Metabolites (DEA and DIA) are generally more abundant than parent compounds


Final Workshop – AQUAREF Passive Sampler Intercomparison Exercise, Nantes, 23rd November

Phenylurea and chloroacetanilide concentrations (2008)

Applications and detection typically during the spring

Access by boat...

Other aspects:

A web site

Water monitoring

Quality assurance

Elleur - Egitti - Farmat Réfriscique Français de Técologie, du Dévelopement du Dévelopement du Dévelopement			E	Essais I	nter Labor	atoire	5	Liens utiles Contacts Connexion INE-RIS mainier le rique pour en diverlappement durable
Apr This mon The depl The	Programmes RY TRIAL PASSIVE SAMP iI-July 2010 : Passive sa s intercalibration is organi- nitoring http://www.aquaref.ft a objective is intercalibration loyment. The results of inter- main goal is to assess the passive set istance Reporting Results www.incer	mpters intercalibre zed under the umb r). tion exercise betwee potential role and ef	erella of AQUAREF, sen expert laborato s will be disseminate ficiency of passive sa	program 2010 (Frenc pries involved in pass ed to French laboratori amplers for water pollut	sive samplers developm es in charge of water mo ants measuremente in	in water ent and A phitorine	Access member area pplication for Registration TO ACCESS Login : Password : Choose your trial : Choose your	

- To register
- To collect results and information (sampling and anaytical strategy) from participants

6 central lab. for water analysis

- BRGM (PAH at Ternay),
- Cemagref of Bordeaux (pesticides, physico-chemical parameters at Beillant),
- Cemagref of Lyon (metals, physico-chemical parameters at Ternay),
- EPOC-LPTC of Bordeaux (pesticides and PAHs at Thau site),
- IFREMER of Sète (physico-chemical parameters at Thau site),
- IFREMER of Nantes (LBCM) (metals at Thau site).

Monitoring of the exposure water conditions

• Ionic composition

 pH, suspended matter, conductivity, salinity (for Thau), DOC, TOC, temperature, water velocity, pluviometry, discharge, dissolved oxygen (for Thau).

• Concentrations of the target compounds in the dissolved and total phases (spot sampling):

	Beillant	Ternay	Thau
Metals		50 mL	500 mL
		Direct analysis by ICP-MS	Danielson method (1982)
	/	LQ from 0.01 for Cd to 0.5 for Zn	ICP-MS
			LQ from 0.1 ng/L for Cd to 10 for Cu and Zn
PAHs		5L samples	2 L
	/	LLE (dichloromethane)	SPE (C18)
		HPLC-Fluo	GC-MS
		LQ: 0.4 ng/L except ACE and PHE at 2 ng/L	LQ: 0.1 ng/L
Pesticides	50 mL samples		2L
	SPE (Oasis HLB)		SPE (Oasis HLB)
	HPLC-MS-MS	/	HPLC-MS-MS
	LQ from 10 to 20 ng/L		LQ from 10 to 20 ng/L

Final Workshop – AQUAREF Passive Sampler Intercomparison Exercise, Nantes, 23rd November

Quality controls and Quality assurance

• Each sampler exposed in triplicate

• 1 field blank per sampler and per site, participant are free to substract or not this blank from their measurements

• A reference solution to evaluate the accuracy and precision of the instrumental analytical step

•Because of the design of the trial, implementation of QC based on reference PSs (spiked and then distributed to all participants) was not technically possible (too many different PSs studied).

A questionnaire measuring satisfaction will be sent to you

The authors thank the French National Agency for Water and Aquatic Environments (ONEMA) via AQUAREF for its financial support

Thank you for your attention !!