Nouvelles approches de surveillance basées sur la réponse de bioessais

Selim Aït-Aïssa, Clémence Chardon, François Brion

Avec la participation de C Miège, B Mathon, C Tixier, I Allan, A Togola, S Lardy-Fontan, F Lestremau, B Piccini, E Maillot-Maréchal

Colloque du Réseau national de Surveillance Prospective (RSP) de la qualité chimique des milieux aquatiques – 23 mars 2021

Contexte : des bioessais pour évaluer la qualité chimique des milieux

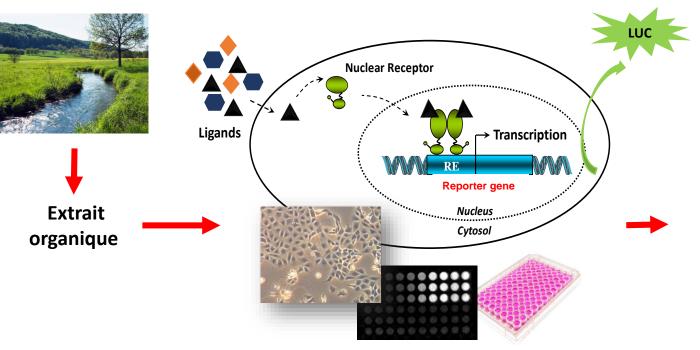
Limites de l'approche « par substances » pour qualifier la qualité chimique

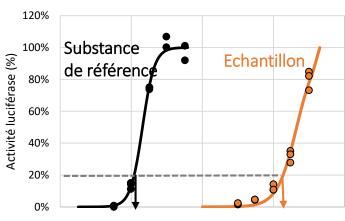
- / Cible un nombre restreint de substances prioritaires vs complexité des contaminations
- / Non prise en compte d'effets de mélanges
- → Besoin de méthodes/stratégies plus intégratives

Les méthodes basées sur les effets biologiques (bioessais) = approches complémentaires à la chimie pour évaluer la qualité chimique des milieux

- / Intégratives: prise en compte des substances connues et inconnues, et de leurs interactions potentielles
- / Information qualitative (mode d'action toxique) et quantitative (équivalents-toxiques)
- / Considérées dans la DCE : DG-ENV/WG-Chemicals/sous-groupe EBM; France: GTN sur les Bioessais

Besoin de les évaluer dans un contexte opérationnel de surveillance → Etudes de démonstration dans le cadre du RSP et d'AQUAREF


- / Eprouver leur applicabilité pour la surveillance chimique : échantillonnage, mise en œuvre, interprétation
- / Recommandations pour la surveillance

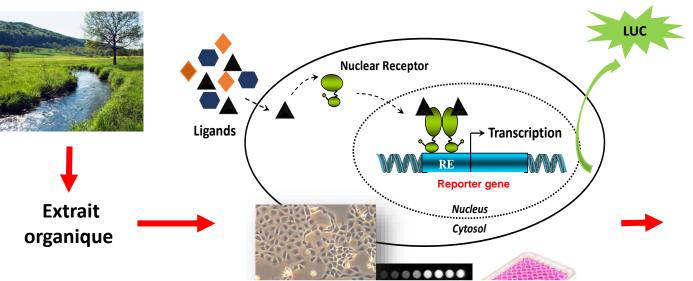


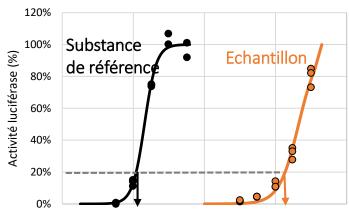
Bioessais *in vitro* basés sur le mode d'action des substances : une démarche bio-analytique

Echantillon

Concentration en g/L

Quantification en équivalentsbioanalytiques (BEQ) par quantité d'échantillon


BEQ = $\frac{EC20 \text{ du composé de référence}}{EC20 \text{ de l'échantillon}}$



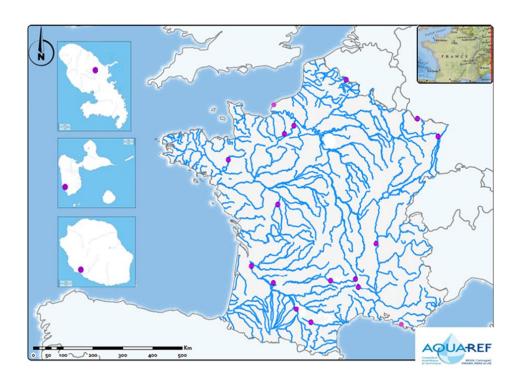
Bioessais *in vitro* basés sur le mode d'action des substances : une démarche bio-analytique

Echantillon

Activité mesurée	Ref-Eq (ng /L)	Bioessai
Estrogénique (ER)	E2-Eq	MELN
Androgénique (AR) Anti-androgénique (aAR)	DHT-Eq Fluta-Eq	MDA-Kb2
Glucocorticoid (GR)	Dex-Eq	MDA-Kb2
HAP-like (HAPL , via AhR)	BaP-Eq	PLHC-1 4h
Dioxin-like (DL , via AhR)	TCDD-Eq	PLHC-1 24h

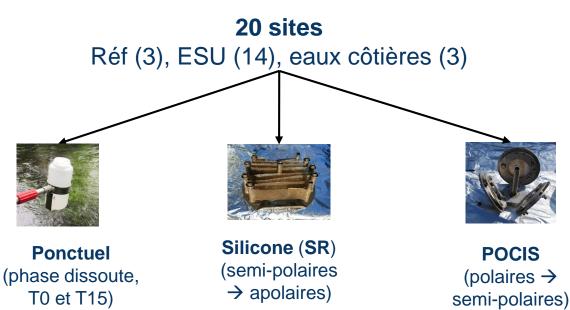
Concentration en g/L

Quantification en équivalentsbioanalytiques (BEQ) par quantité d'échantillon


BEQ = $\frac{EC20 \text{ du composé de référence}}{EC20 \text{ de l'échantillon}}$

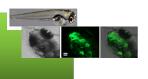
Etude de démonstration : démarche générale

20 sites Réf (3), ESU (14), eaux côtières (3)


RSP: Etude DEMO-EIP, campagnes 2017-2018 (Miège et al)

Site	Bassin	Station	Pression
Allier	LB	Reference	/
Boralde	AG	Reference	/
Luech	RMC	Reference	/
Jalle	AG	ESU	Α
Hers mort	AG	ESU	U - I - A
Tolzac	AG	ESU	Α
Escaut	AP	ESU	U - I - A
Clain	LB	ESU	U - I - A
Vilaine	LB	ESU	U - I - A
Rosselle	RM	ESU	U - I - A
Souffel	RM	ESU	U - I - A
Gier	RMC	ESU	U - I
Lazaret	RMC	Eau côtière	U - H
Tréboul	RMC	ESU	I - A
Antifer	SN	Eau côtière	U - H
lton	SN	ESU	U - A
Risle	SN	ESU U - A	
Pérou-Pères	DROM	ESU Faible	
Gd Gallion	DROM	ESU	Faible
Etang du Gol	DROM	Eau côtière	Faible

Etude de démonstration : démarche générale



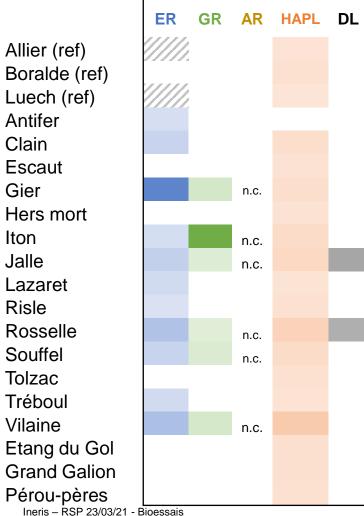
Bioessais in vitro

- → Diagnostic perturbateurs endocriniens (ER, AR, GR), HAP-L et dioxin-like (AhR)
- → Distribution entre eau vs. EIP
- → Proposer un classement des sites

Impact à l'échelle de l'organisme

→ Activité estrogénique in vivo

Comparaison avec la chimie


- → Hormones œstrogènes
- → Criblage HRMS

Profils d'activités in vitro : eaux ponctuelles

PONCTUEL

- → Activités les plus fréquentes : ER et HAPL
- → GR : site spécifique (pharma?)
- → AR/aAR : non détectées

Valeurs de BEQ en ng Ref-Eq/L

Cases blanches = activité non détectée Cases hachurées = pas de donnée

n.c = non calculables

Profils d'activités in vitro : eaux ponctuelles vs échantillonneurs intégratifs passifs (EIP)

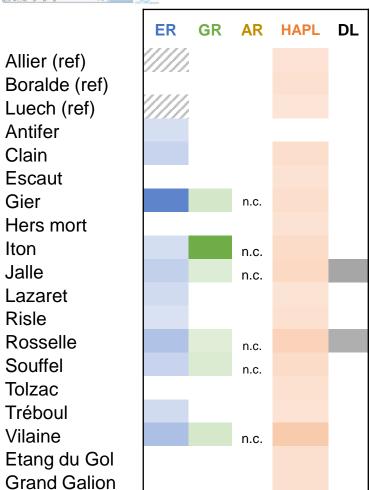
Pérou-pères

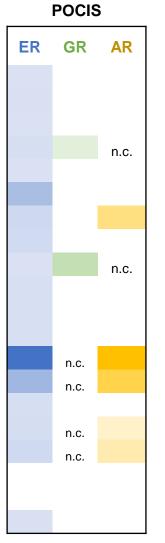
Ineris - RSP 23/03/21 - Bioessais

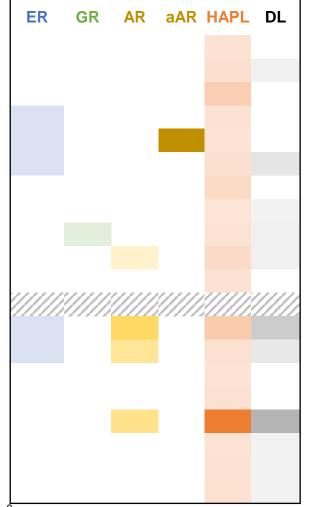
SR

Valeurs de BEQ en ng Ref-Eq/L

min max


Cases blanches = activité non


détectée Cases hachurées = pas de donnée n.c = non calculables



→ HAPL et DL: SR > POCIS > Eau

→ GR : Eau vs AR : EIP

Profils d'activités in vitro : eaux ponctuelles vs échantillonneurs intégratifs passifs (EIP)

		Prélèvement ponctuel (phase dissoute)	POCIS	SR	3EQ :q/L
Allier (ref)	Intégration dans le temps	Non	Oui	Oui	max
` ,	Capacité de concentration de l'échantillon (facteur d'enrichissement maximal testé dans les bioessais)	+ (50 X)	++ (200 X)	+++ (>1000 X)	ctivité non pas de s
Gier Hers mort	Quantification dans l'eau	Oui	Semi- quantificatif	Oui	
Jalle Lazaret Risle Rosselle	Lazaret Risle QA/QC (blancs)	Blancs SPE marginalement actifs sur ER	Blancs extraction actifs sur HAPL	Blancs préparation + terrain: « propres »	Eau > SR 3R > POCIS > R : EIP
Souffel Tolzac Tréboul Vilaine Etang du Go Grand Galio		ER GR (AR) HAPL	ER AR (GR)	HAPL DL aAR	
Pérou-pères Ineris – RSP 23/0		9		AQUAREF	INE-RIS maitriser la risque pour un développement durable

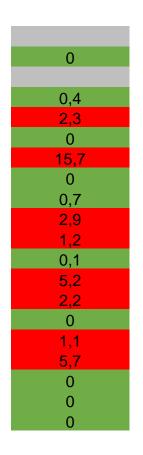
Activité in vitro : quelle information sur le risque?

Cas de l'activité estrogénique

Calcul de Quotients de risque (RQ)

BEC

(ng E2-Eq/L)


Q	$PO = \frac{BEC}{C}$
-	$RQ = \frac{DEC}{VS}$

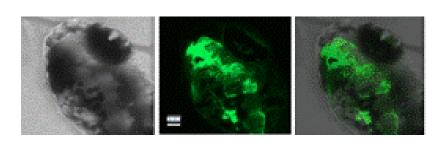
	(1.9 == = 4/=)
Allier (ref)	
Boralde (ref)	<0,06
Luech (ref)	
Antifer	0,22
Clain	1,28
Escaut	<0,04
Gier	8,78
Hers mort	<0,04
Iton	0,38
Jalle	1,63
Lazaret	0,65
Risle	0,04
Rosselle	2,92
Souffel	1,25
Tolzac	<0,06
Tréboul	0,60
Vilaine	3,20
Etang du Gol	<0,05
Grand Galion	<0,01
Pérou-pères	<0,01

Valeurs seuils (VS):

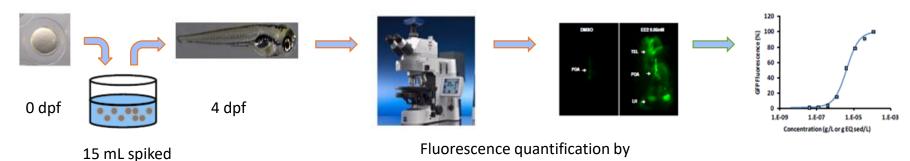
0,56 ng E2-Eq/L (Brion et al 2019)

Käse et al 2018 : **0,4** ng/L Escher et al 2018: **0,37** ng/L Jarosova et al 2014: **0,3** ng/L Van der oost et al 2017: **0,5** ng/L

RQ>1



Activité estrogénique : in vitro vs in vivo


water

EASZY bioassay = Detection of **E**ndocrine **A**ctive **S**ubstance, acting through estrogen receptors, using transgenic cyp19a1b-GFP **Z**ebrafish Embr**Y**os

(Brion et al. 2012)

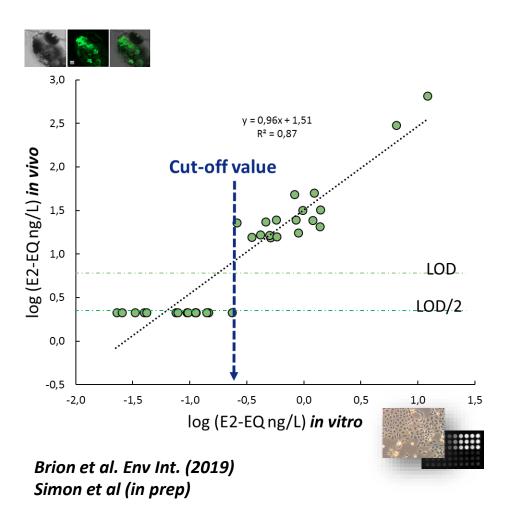
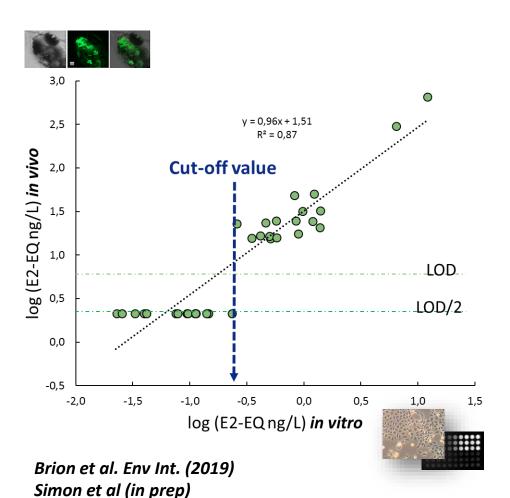
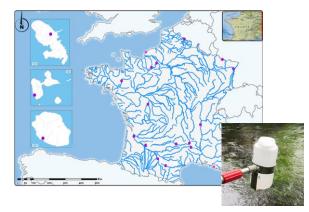

11

image analysis

Activité estrogénique : in vitro vs in vivo

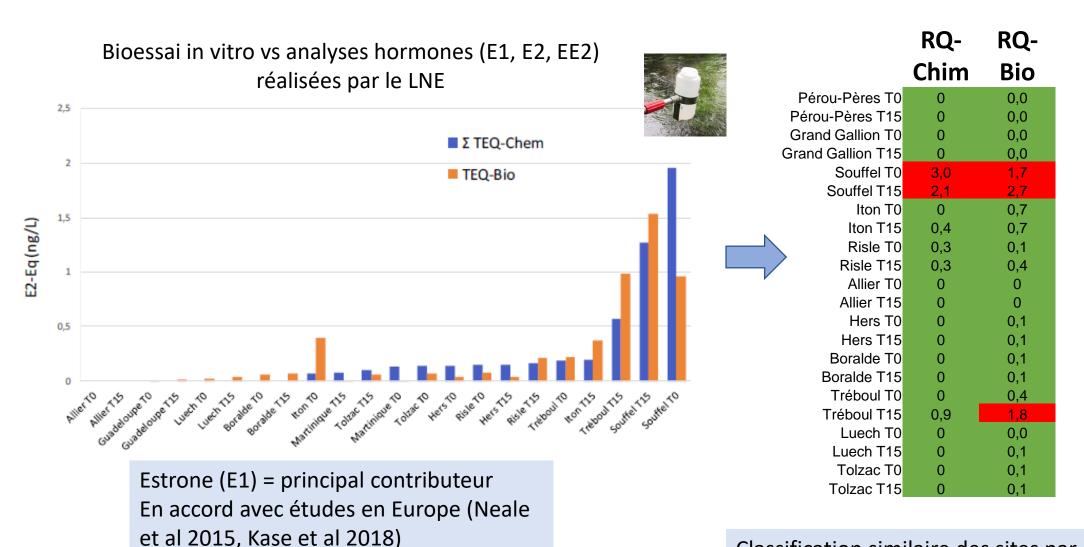
Action européenne SPI-« Steroid estrogen monitoring using effect-based and chemical analyses» -33 eaux de surface et eaux usées





Activité estrogénique : in vitro vs in vivo

Action européenne SPI-« Steroid estrogen monitoring using effect-based and chemical analyses» - 33 eaux de surface et eaux usées


RSP 2018

Sites	In vivo (EASZY)	In vitro (RQ MELN)
Gier	Actif	31,0
Vilaine	Actif	9,9
Souffel	Actif	1,7
Jalle	Non actif	3,3
lton	Non actif	0,7
Antifer	Non actif	0,2
Risle	Non actif	0,1
Pérou-pères	Non actif	0,0
Grand Gallion	Non actif	0,0

Pertinence du risque associé à la mesure in vitro au regard d'un effet in vivo chez le poisson

Activité estrogénique : in vitro vs analyses hormones

Classification similaire des sites par les hormones oestrogènes et par le bioessai in vitro

Valeurs seuils in vitro toutes activités

Activité	Valeur seuil pour le	Valeur seuil pour un	Référence
in vitro	bioessai utilisé	bioessai analogue	
ER	0,56 ng E2-Eq/L (MELN)	-	Brion et al 2019
AR	10 ng DHT-Eq/L (MDA-kb2)	-	Escher et al 2018
aAR	3,46 μg FLU-Eq/L (MDA-kb2)	-	Escher et al 2018
GR	Pas de valeur seuil proposée pour le bioessai MDA-kb2	100 ng DEX-Eq/L (GR-CALUX)	Van der Oost et al 2017
		150 ng BaP-Eq/L (PAH-CALUX)	Van der Oost et al 2017
HAPL	Pas de valeur seuil proposée pour le bioessai PLHC-1	62,5 ng BaP-Eq/L (PAH-CALUX)	De Baat et al 2020
		6.2 ng BaP-Eq/L (PAH-CALUX)	Escher et al 2018
DR	Pas de valeur seuil proposée pour le bioessai PLHC-1	0,05 ng TCDD-Eq/L (DR-CALUX)	Van der Oost et al 2017

Classement des sites sur la base de dépassement de valeurs seuils

Quotients de risques: RQ = BEQ_{éch}/valeur seuil, RQ>1 RQ<1

	∑RQ						
Gier	15,7	1,1	0	0	1,2	0	18,0
Rosselle	5,2	0,2			3,3	5,3	14,0
Vilaine	5,7	1,0			4,8	0	11,5
Jalle	2,9	0,4			2,2	5,8	11,4
lton	0,7	8,7			1,7	0	11,1
Souffel	2,2	0,6			1,6	0	4,4
Clain	2,3	0	0	0	1,3	0	3,6
Tréboul	1,1	0	0	0	0,4	0	1,5
Lazaret	1,2	0	0	0	0,2	0	1,4
Gd Gallion	0	0	0	0	0,9	0	0,9
Etang Gol	0	0	0	0	0,9	0	0,9
Boralde (ref)	0	0	0	0	0,8	0	0,8
Pérou-pères	0	0	0	0	0,8	0	0,8
Tolzac	0	0	0	0	0,7	0	0,7
Risle	0,1	0	0	0	0,7	0	0,7
Hers mort	0	0	0	0	0,5	0	0,5
Escaut	0	0	0	0	0,4	0	0,4
Antifer	0,4	0	0	0		0	0,4
Allier (ref)	0	0	0	0	0,3	0	0,3
Luech (ref)	0	0	0	0	0,2	0	0,2

	P	OCI	S		SR		
	ER	GR	AR	aAR	HAP	DL	∑RQ
Gier	1,5	0	0,1	0,0	2,0	0	3,6
Rosselle	18,9	0	0,2		4,9	3,0	26,9
Vilaine	1,4	0	0,0		18,9	4,8	25,1
Jalle	0,3	0	0		1,8	0,5	2,5
lton	0,1	2,2			0,2	0,5	3,0
Souffel	7,2	0			0,8	1,1	9,1
Clain	0,1	0	0	0	0,3	0	0,4
Tréboul	0,6	0	0	0	0,6	0	1,2
Lazaret	0,3	0	0	0	0,4	0	0,8
Gd Gallion	0	0	0	0	0,5	0,3	0,8
Etang Gol	0	0	0	0	0,4	0,2	0,6
Boralde (ref)	0,2	0	0	0	1,0	0	1,3
Pérou-pères	0,2	0	0	0	0,7	0,2	1,1
Tolzac	0,5	0	0	0	0,2	0	0,6
Risle	0,4	0	0				0,4
Hers mort	1,2	0	0	0	0,1	0,1	1,4
Escaut	6,0	0	0	0	0,9	1,2	8,2
Antifer	0,5	0		0	0,5	0	1,0
Allier (ref)	0	0	0	0	0,4	0	0,4
Luech (ref)	0,1	0	0	0	4,2	0	4,3

Classement des sites sur la base de dépassement de valeurs seuils

Quotients de risques: RQ = BEQ_{éch}/valeur seuil, RQ>1 RQ<1

	ER	GR	AR	aAR	HAP	DL	∑RQ
Gier	15,7	1,1	0	0	1,2	0	18,0
Rosselle	5,2	0,2			3,3	5,3	14,0
Vilaine	5,7	1,0			4,8	0	11,5
Jalle	2,9	0,4			2,2	5,8	11,4
lton	0,7	8,7			1,7	0	11,1
Souffel	2,2	0,6			1,6	0	4,4
Clain	2,3	0	0	0	1,3	0	3,6
Tréboul	1,1	0	0	0	0,4	0	1,5
Lazaret	1,2	0	0	0	0,2	0	1,4
Gd Gallion	0	0	0	0	0,9	0	0,9
Etang Gol	0	0	0	0	0,9	0	0,9
Boralde (ref)	0	0	0	0	0,8	0	0,8
Pérou-pères	0	0	0	0	0,8	0	0,8
Tolzac	0	0	0	0	0,7	0	0,7
Risle	0,1	0	0	0	0,7	0	0,7
Hers mort	0	0	0	0	0,5	0	0,5
Escaut	0	0	0	0	0,4	0	0,4
Antifer	0,4	0	0	0		0	0,4
Allier (ref)	0	0	0	0	0,3	0	0,3
Luech (ref)	0	0	0	0	0,2	0	0,2

POCIS					SR		
	ER	GR	AR	aAR	HAP	DL	∑RQ
Gier	1,5	0	0,1	0,0	2,0	0	3,6
Rosselle	18,9	0	0,2		4,9	3,0	26,9
Vilaine	1,4	0	0,0		18,9	4,8	25,1
Jalle	0,3	0	0		1,8	0,5	2,5
lton	0,1	2,2			0,2	0,5	3,0
Souffel	7,2	0			0,8	1,1	9,1
Clain	0,1	0	0	0	0,3	0	0,4
Tréboul	0,6	0	0	0	0,6	0	1,2
Lazaret	0,3	0	0	0	0,4	0	0,8
Gd Gallion	0	0	0	0	0,5	0,3	0,8
Etang Gol	0	0	0	0	0,4	0,2	0,6
Boralde (ref)	0,2	0	0	0	1,0	0	1,3
Pérou-pères	0,2	0	0	0	0,7	0,2	1,1
Tolzac	0,5	0	0	0	0,2	0	0,6
Risle	0,4	0	0				0,4
Hers mort	1,2	0	0	0	0,1	0,1	1,4
Escaut	6,0	0	0	0	0,9	1,2	8,2
Antifer	0,5	0		0	0,5	0	1,0
Allier (ref)	0	0	0	0	0,4	0	0,4
Luech (ref)	0,1	0	0	0	4,2	0	4,3

Nb de composés identifiés par HRMS (mode suspect, LC et GC ESI+/-)*

++++
++++
+++
+++
+++
++++
++++
+++
+
++
++
+
+
+++
+++
++++
++++
++
+
+

*Etude DEMO-NTS (Rapport Aquaref, Togola et al)

	+	0-50
	++	50-100
J)	+++	100-150
market and	++++	>150

Conclusions

Pertinence des outils bio-analytiques :

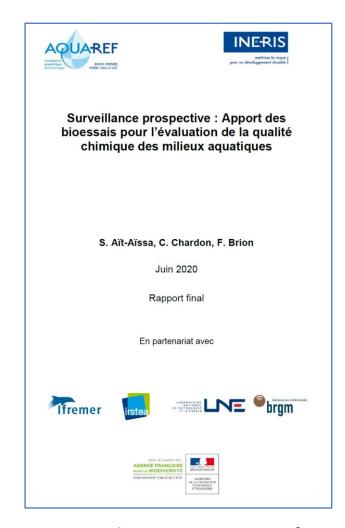
Renseigner de la contamination par les PE et les DL

Prioriser les sites en fonction du risque (valeurs seuils)

Identifier des sites hotspots et tracer les sources

Apport des EIP pour révéler certains sites actifs (Hers, Escaut) ou activités (POCIS : ER et AR, SR: HAPL)

Recommandations pour leur application en contexte de surveillance (cf rapport) :


Stratégie d'échantillonnage et de bioessais

Contrôle qualité: importance des blancs

Développements futurs

Développement de l'approche *in vitro / in vivo :* raffiner certaines valeurs (activité HAPL) et les challenger expérimentalement

Etendre la stratégie bio-analytique à d'autres bioessais basés sur le mode d'action des polluants.

selim.ait-aissa@ineris.fr

Remerciements

François Brion, Clémence Chardon, François Lestremau, Emmanuelle Maillot-Maréchal, Benjamin Piccini

Cécile Miège, Baptiste Mathon, Amandine Daval

Ian Allan, Emilie Noël-Chéry, Céline Tixier

Anne Togola

Sophie Lardy-Fontan

Merci de votre attention!

