

Passive samplers such as PDB, DGT and POCIS for monitoring groundwater quality : A field trial

C. Berho, A. Togola, J-P. Ghestem

Context of the work

> Groundwater is characterised by

- Low water flow
- Sampling using a well
- Well purged before groundwater sampling (representativity of sample)

> Few applications of passive samplers in groundwater by comparison with surface waters

- Some publications on the use of equilibrium passive samplers in groundwater (Passive Diffusive bags PDB) (USGS works)
- Only few publications (Gustavson et al., 2000, Vrana et al., 2005) about integrative passive sampling in groundwater :
 - SPMD only
 - It is more likely that SPMD uptake is limited by groundwater flow.
- More recently, preliminary tests of PDB, ceramic dosimeters, Sorbicells in groundwater in polluted sites (INERIS, METROCAP project, May 2011)

Applicability of such tools in groundwater

Objectives

- > To perform preliminary tests to study of the applicability of passive sampling in groundwater
 - Comparison between passive sampling and classical sampling in a groundwater
 - Demonstration of the advantages and drawbacks of passive samplers on a case study
- Study done in 2010 under Aquaref programme (report available on the web site of AQUAREF)

The study site : criteria of choice & description

> Choice criteria

- Presence of several types of pollutants which can be targeted by available passive samplers
- Concentrations at environnemental levels
- Difficulties to find a site which has multi pollutant's

> Site selected : A drinking water supply site presently closed

- Presence of volatile organic compounds and polar pesticides & metals at low concentrations
- Well : 6m of depth and 80 mm of diameter

Selected compounds & passive samplers

> Types of compounds

- Polar pesticides 60 compounds
- Pharmaceuticals -15 compounds
- VOC 54 compounds
- Metals 11 compounds

> Types of Passive samplers

- POCIS (Polar Organic Compound Integrative Sampler)
- PDB (Passive Diffusive Bag)
- DGT (Diffusive Gradient in Thin film)

General methodology of sampling

- > 4 campaigns of about 15-20 days duration
- > Classical sampling with a twister pump at 3m before and after purging (3* volume of the well)
- Measurement of physico chemical parameters before and after purging
- > Deployment of passive samplers in replicates on a plastic chain at 2 depths

Passive Diffusive Bags (PDB) / VOC sampling

- > LDPE bag with desionised water (Exposmeter)
- > Equilibrium passive sampler
- > At the end of exposure, transfert of water in flasks
- > Analysis of VOC by ITEX/GC/MS
- > Comparison with classical sampling (before and after purging) at the retrieval of PDB.

Comparison between PDB and classical sampling (4 campaigns : C1 C2 C3 C4 ; after purging)

PDB > Conclusion

> Detection of 7 molecules of the 54 which were analysed at low concentrations (<6 µg/L)</p>

> Slight stratification in the piezometer, probably due a vertical distribution of compounds in the water column (stratification in accordance with volatility)

> PDB results in good agreement with classical sampling results (before or after purging)

POCIS - Polar organic compound integrative sampler

- > POCIS with phase in OASIS HLB (Exposmeter) for groundwater
- > Elution with methanol followed by HPLC/MS/MS analysis
- > TWAC estimation : TWAC = m/(Rst)

TWAC : Time Weight Average Concentration m : accumulated mass Rs : Sampling rate from littérature (L/d/g of Pocis) t : time duration (days)

Comparison with the average concentration in water samples during the campaign

Géosciences pour une Terre durable

Pesticide concentrations in water samples over the 4 campaigns

POCIS/pesticides : accumulated mass (ng/g) during the 4 campaigns

TWAC (with Rs from litterature) vs spot sampling analysis

Factor of 4 to 50 between TWAC and Water concentration Rs found in littérature are not applicable to this site

TWAC (Rs from campaign 1) vs spot sampling analysis

Factor of 2-3 between TWAC and water concentration As accumulation is not reproducible from a campaign to another, POCIS does not allow to follow the pesticide concentrations in groundwater

Pharmaceutica	als : qua	alitativ	e infoi	rmatio	n (scree	ening)
Class	ical sam	pling	Passive	e sampl	ing	•
Pharmaceuticals	Water Campaigns 1,2,3,4	POCIS campaign 1	POCIS campaign 2	POCIS campaign 3	POCIS campaign 4	
FENOFIBRIC ACID				+		
CARBAMAZEPINE		+	+	+	+	
BROMAZEPAM			+	+	+	
SULFAMETHOXAZOLE			+	+	+	
LORAZEPAM				+	+	
DICLOFENAC					+	
OXAZEPAM					+	

Detection of compounds not detected by classical sampling

POCIS >Conclusion

> Qualitative information

- screening of pesticides and pharmaceuticals
- Improvement of the screening performance in comparison with classical approach

> Quantitative information

- Sampling rate from litterature are not applicable to this site
 - Accumulation from a campaign to another is not reproducible
 - Is water flow sufficient to ensure a constant concentration at the surface of POCIS ?
 - Is water flow constant over the 4 campaigns ? (probably not due to the starting of the drinking water supply unit)

Others results more promising in other sites

DGT – Diffusive Gradient in Thin film

- Classical DGT used except for one campaign for which 3 types of DGT used with different thickness, 0.76, 1.18 et 1.95 mm (DGT Research)
- > Estimation of the diffusion boundary layer according the publication (Kent W. Warnken et al., 2006)
- > Elution by HNO3 followed by ICP/MS analysis
- > Estimation of the TWAC in water :

$$C_{\rm DGT} = \frac{M \left(\frac{\Delta g}{D_{\rm gel}} + \frac{\delta}{D_{\rm w}} \right)}{At}$$

> Comparison with the average concentration in metals in water water samples during the campaign

Metal concentrations in water samples & influence of purging

concentration (ng/L)		Ni	Со	Cu	Zn	Cd	Pb	U	
Campaign 1		before purging	1159	129	947	7559	39	44	997
	beginning	after purging	839	124	635	1726	6	16	999
		before purging	1640	130	445	4305	55	33	1093
	end	after purging	877	123	280	1627	20	50	1107
Campaign 2		before purging	1480	135	435	2020	33	25	965
	beginning	after purging	1025	150	260	1070	8	10	985
		before purging	3017	140	583	5720	23	20	980
	end	after purging	900	130	280	1653	6	20	1037
Campaign 3		before purging	3017	140	583	5720	23	20	980
	beginning	after purging	900	130	280	1653	6	20	1037
		before purging	2787	130	403	4973	18	67	1043
	end	after purging	843	120	243	1063	6	50	1067
Campaign 4	beginning	before purging	2787	130	403	4973	18	67	1043
		after purging	843	120	243	1063	6	50	1067
		before purging	12270	137	757	11350	39	23	997
	end	after purging	1063	140	230	807	4	17	1013

Low concentrations of metals in groundwater

Ni, Zn : High Influence of purging Co, U : Concentrations are constant - No influence of purging Pb, Cu, Cd : Concentrations are constant over the 4 campaigns- low influence of purging

Estimation of the diffusive boundary layer

- > Low flow in comparison with surface water
- > The DBL was calculated according Kent W. Warnken et al., 2006 by using DGT with several gel thickness
- > <u>Rough</u> estimation of the DBL :

 $\delta = 1 \text{ mm}$

ΑΙ	Cr	Mn	Ni	Со	Cu	Zn	Cd	Pb
0,9	0,8	0,6	1	0,7	1	1,3	1,6	0,6

Ni, Zn : overestimation of water concentration probably due to the water quality before purging

TWAC vs spot sampling analysis

Good reproducibility from a campaign to another Co, Pb, U : probable influence of the speciation Cd : little overestimation, influence of the water quality before purging Cu : influence of the water quality before purging

DGT conclusions

> The DBL does not seem to be negligible for this site

Need to get more data in other sites

> Representativity of water in the well & local pollution

- all the more so as the well was not very deep (influence of runoff ??)
- Depends on the elements

Speciation : is there any interest to know the « bioavailable fraction » in groundwater ?

Conclusion on this case study : applicability of passive sampling in groundwater

> Limits which are identified

- Representativity of water in the well & local pollution especially for metals all the more so as the well was not very deep
- Pollution by the deployment system
- Variation of the water flow & direction of the flow ?

> Qualitative tool

- Screening of molecules
- Deployment at several depths to estimate vertical variability

> Quantitative tool

- PDB powerful tool
- Influence of the water flow especially for POCIS

Perspectives : Applicability of passive samplers in groundwater

- > Need to investigate the applicability on other sites
- Identification of conditions (water flow) for which passive sampling is applicable for quantitative information

> Acquisition of specific sampling rates

- Use of PRC : difficult in groundwater used for drinking water supply
- Experimental calibration system representative of groundwater → ORIGAMI PROJECT (ANR 2012-2015)
- In situ calibration : need of « model groundwater site »

