Interest of integrative samplers for the measurement of micro-pollutants in complex matrixes

Validity of DGTs, SPMDs and POCIS in urban waters

Cemagref : LPTC Bordeaux : LEESU Marne-la-Vallée <u>C. Gourlay-Francé</u>, <u>C Miège</u>, R. Jacquet, M. Coquery H. Budzinski, C. Soulier C. Lorgeoux

AXELERA

The AMPERES project

AMPERES : Analysis of prioritary and emerging micropolluants in wastewater and freshwaters

Suct .

Main objective : Evaluate the efficiency of wastewater treatment processes for priority and emerging substances removal Coordination : Marina Coquery, Cemagref

Partners :

- CIRSEE (Suez-Environnement)
- Cemagref (Lyon, Antony)
- LPTC-ISM, Bordeaux-1 University
- Rhône Méditerranée Corse Water Agency
- ✓ Cereve (LEESU)
- ✓ UT2A
- Support : ANR PRECODD (2006-2009) + AXELERA (Rhodanos)

The AMPERES project : objectives

- Measure the micropollutant concentrations and fluxes in domestic wastewater treatment plants outputs (water and sludge)
 - Analytical developments

Interest of integrative passive samplers in waters with high contamination variations

- Evaluate the efficiency of conventional treatment processes for priority and emerging contaminants removal (water, sludge)
- Evaluate the efficiency of innovative processes.
- Assess the impact of micropollutants discharges on water uses: aquatic receiving ecosystems; water reuse; drinking water production

Passive sampler principles

ANR

AXELERA

Immerged during a long period of time

Few hours, few days, few months

Diffusion of a substance towards a membrane

- Accumulation in a receiving phase
 - Preconcentration for some devices
- Partitioning of substances between the accumulation phase of the sampler and the medium

$$\frac{dC_{\acute{ech.}}}{dt} = \frac{R_S}{V_{\acute{ech.}}}C_{eau} - k_e C_{\acute{ech.}}$$

Some specific cases :

- The accumulator is "linear"

$$M_{\acute{e}ch} = C_{\acute{e}ch}V_{\acute{e}ch} \neq R_{\it S}C_{eau}t$$

- The exposure is constant with time $M_{\acute{e}ch} = \frac{K_S}{k_e} C_{eau} (1 - e^{-k_e t})$ $t_{1/2} = \ln 2 / k_e$.

To evaluate a time-weighted average concentration in water from accumulated amounts, one needs R_s (and k_e) for each subtance

- Experimental data
 - Not available for all substances
- Influence of exposure conditions for some samplers
 - Use of Performance Reference Compounds to control in situ exchanges

Metals

DGT Chelex resin and a diffusion hydrogel (Davison and Wang, 1994)

In situ sampler

pre-concentration, sampling less prone to contamination Measurement in the resin eluate, no matrix effect

Quantitative integrative sampler

Integrative sampling (no metal removal from the resin) Accumulation kinetic is controlled by the diffusion in the hydrogel Calculation of a time-weight average concentration

M accumulated metal in the resin
e : gel thickness *A* exposition surface *D* Diffusion coefficient of the metal
t Exposition time

Selective sampling of labile metals

inorganic metal + small and weak complexes

Symposium "Passive Samplers and Alternative Sampling Techniques" November, 24th 2011 5

Financé par ANR

AXELERA

Hydrophobic organic compounds

SPMD Semiperpeable membrane device: polyethylene tube filled with triolein (Huckins et al, 1993)

membranes

Polymeric membranes: polyethylene, silicone, polyamide... (Booij et al, 2002)

Passive diffusion of non polar hydrophobic compounds Accumulation in the membrane and in the triolein Membrane porosity ≈ 10 Å (1 000 Da)

Only truly dissolved compounds are available for sampling

Estimation of a time-weighted average concentration in water

Cemagref Sciences, eaux & territores

POCIS Polar Organic Compound Integrative Sampler (Alvarez et al, 2004)

HLB (Divinylbenzene – N-vinylpyrrolidone) phase sandwiched between two polyethersulfone membranes (0.1 μ m) maintained by metallic disks

Hydrophilic organic compounds

Selective diffusion of dissolved substances according to their affinity with the receiving phase.

- Sampling of hydrophilic substances
- Screening (selection, pre-concentration)

> Time-weighted averaging

$$C_{water} = \frac{C_{POCIS} . M_{POCIS}}{R_{s} . t}$$

The sampling rates R_S are evaluated in the laboratory and applied to POCIS exposed in situ

- the R_S database is ongoing
- the quantification of a concentration in water is being validated

Which samplers for which substances of the AMPERES project ?

Finance par

AXELERA

AXELERA

Passive sampling issues in the AMPERES project

agence del'eau Martinera inter

Applicability of passive sampling tools for the substances and the matrices of interest

- a wide variety of metallic and organic contaminants
- wastewaters, drinking waters, water ressources...

For metals and hydrophobic compounds

- **DGTs and SPMDs** were already validated in aquatic media.
 - validity of the measurement in highly loaded water ?
 - mechanical resistance of the samplers in wastewaters ?
 - Quantification? characterization of the labile fraction ?

Other substances (pharmaceuticals, alkyphenols...)

Little information on the sampling by integrative sampling devices

- efficiency of the samplers
 - matrix effects, concentrations factors, repeatability
 - accumulation linearity, sampling rates
- comparison of several devices for moderately hydrophobic compounds
- Applicability in situ

Cemagref

Metal sampling in wastewater using DGTs

1,6

FFSL

Gourlay-Francé et al, 2011, Wat. Sci. Technol.

Symposium "Passive Samplers and Alternative Sampling Techniques" November, 24th 2011 10

Metal sampling in wastewater using DGTs

sampling in the "SE2" plant at different stages of

Symposium "Passive Samplers and Alternative Sampling Techniques" November, 24th 2011 11

PAH sampling in wastewater using SPMDs

- Cemagref
- agence oel/eau recommended

•Fast SPMD/water exchanges

•"normal" functioning

procedure

• high accumulation capacity

good resistance to deployment

good consistency of PRC removal

Optimization of the SPMD extraction

Quantification < ng/L with a good reproducibility

Labile PAH concentrations: 6 – 36 % of total dissolved PAHs

Gourlay-Francé et al, Chemosphere, 2008

>Surprisingly high K_{DOC} for low K_{OW} compounds

In situ K_{DOC} are close to experimental values
 SPMD-available compounds are mostly truly dissolved
 Gourlay-Francé et al, Chemosphere, 2008