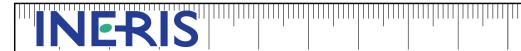


Journée technique Perfluorés

Généralités

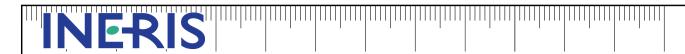
- Commencent à être produits à partir de 1947 pour le PFOA.
- Propriétés tensions actives, utilisés pour la fabrication de substances hydrofuges, oléofuges, anti-salissantes et imperméables aux graisses.
- Appliqués sur les tissus, les emballages, les tapis et les moquettes. Ils participent également à la formulation d'agents tensio-actifs, de détergents, d'émulsifiants, démouillants, de dispersants et de mousses extinctrices.



Généralités

Exemple de composés perfluorés

Acide perfluoro octanesulfonique (PFOS)


Acide perfluoro octanoïque (PFOA)

Exemple de composés perfluorés

CARBOXYLATES D'ALKYLS PERFLUORES (PFCA)

Formule chimique	n	Nom	Abréviation
F-G-G-C-O-F-F-F-n	1	Acide perfluoropropanoïque	PFPrA
	2	Acide perfluorobutanoïque	PFBA
	3	Acide perfluoropentanoïque	PFPeA
	4	Acide perfluorohexanoïque	PFHxA
	5	Acide perfluoroheptanoïque	PFHpA
	6	Acide perfluorooctanoïque	PFOA
	7	Acide perfluorononanoïque	PFNA
	8	Acide perfluorodécanoïque	PFDA
	9	Acide perfluoroundécanoïque	PFUnA
	10	Acide perfluorododécanoïque	PFDoA
	11	Acide perfluorotridécanoïque	PFTrA

Exemple de composés perfluorés

SULFONATES D'ALKYLS PERFLUORES (PFAS)

Formule chimique	n	Nom	Abréviation
F-G-G-S-O-F-F-O	3	Sulfonate de perfluorobutane	PFBS
	5	Sulfonate de perfluorohexane	PFHxS
	6	Sulfonate de perfluoroheptane	PFHpS
	7	Sulfonate de perfluorooctane	PFOS
	9	Sulfonate de perfluorodécane	PFDS

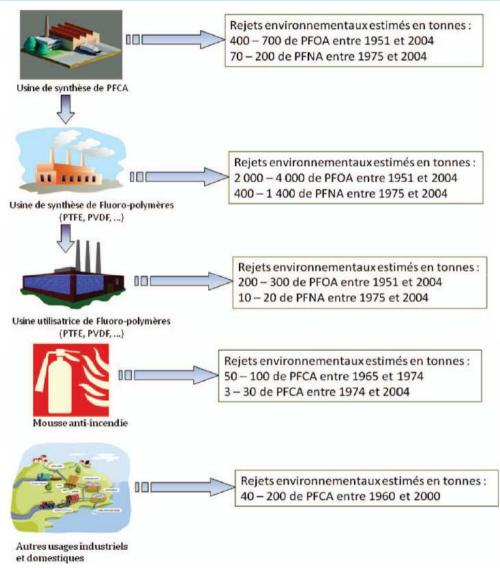
INERIS

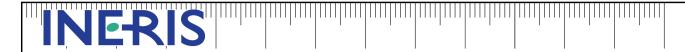
Formule chimique	n	p	Classe	Abréviation
F-(CF ₂),(CH ₂), OH	6	2	Alcools	6:2 FTOH
	8	2		8:2 FTOH
F-(CF ₂) CH ₂	6		Oléfines	6 FTO
F-(CF ₂),(CH ₂),-I	6	2	Iodures	6:2 FTI
$F - (CF_2) + (CH_2) - S - O^-$	6	2	Sulfonates	6:2 FTS
F-(CF ₂), (CH ₂), O-C C CH ₂	6	2	Acrylates	6:2 FTA
F-(CF ₂)-C-CH ₃	6		Cétones	6:2 FTK
F-C-S-N F-C-C-S-N F-C-CH ₂ -CH ₂ OH			Composé à base de PFOS	FOSE
F F O H F C C S N CH ₂ C O			Composé à base de PFOS	FOSAA
F-C-C-S-NH ₂			Composé à base de PFOS	FOSA
F-F-O CH ₃ F-C-S-N F-F-O CH ₂ -CH ₂ OH			Composé à base de PFOS	N-MeFOSE

F11			Classa	Al-frieden
Formule chimique	n	р	Classe	Abréviation
F-G-G-S-N CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CO			Composé à base de PFOS	N-EtFOSAA
F-C-C-S-N F-C-C-S-N CH ₃			Composé à base de PFOS	N,N-diMeFOSA
F-(CF ₂), CH ₂ -C	6		Acides saturés	6:2 FTCA
F-(CF ₂) CF=CH-CO	5		Acides insaturés	6:2 FTUCA
$F \leftarrow CF_{2h} \leftarrow CH_{2h} \rightarrow $	6	2	Composés phosphorés	6:2 Mono-PAP
$\begin{array}{c} F \hspace{-0.1cm} -0.1c$	8	2	Composés phosphorés	8:2 Di-PAP

Introduction dans l'environnement

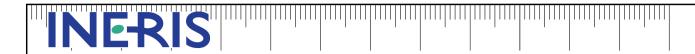
PFAS


- Synthèse du PFOS arrêté en 2002.
- Présence dans


Mousses anti incendies (12600 tonnes pour PFOS) Produits industriels et domestiques (32000 tonnes PFOS)

Dispersion dans l'environnement estimés à
 75 et 299 tonnes de PFOS
 681 et 2600 tonnes de produits à base de PFOS

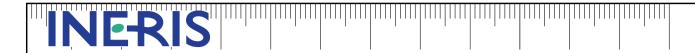
INERIS


Introduction dans l'environnement

Introduction dans l'environnement

- Par les rejets industriels de fabricants de composés perfluorés
- L'utilisation de mousses à incendies et lessivage de sols contaminés
- Présence dans les stations de traitement des eaux usées (STEP)
- Transport atmosphérique (détection de perfluorés dans l'arctique)

Propriétés physico chimiques


Solidité des liaisons fluor-carbone (F-C)

Résistants à l'hydrolyse acido-basique la photolyse la dégradation microbienne la métabolisation par les vertébrés

Persistants dans l'environnement et bioaccumulés par les organismes aquatiques

Effet sur l'environnement

Persistants et bioaccumulés par les organismes aquatiques

Hydrophiles et lipophiles

Liaison avec de nombreuses protéines

- Tumeur de la thyroïde et du foie
- Effets reprotoxiques
- Réduction du taux de cholestérol
- Modifications de la perméabilité des membranes cellulaires

Analyse des perfluorés

Législation

Actuellement

Pas d'interdiction ou de texte concernant les composés perfluorés dans les milieux aquatiques

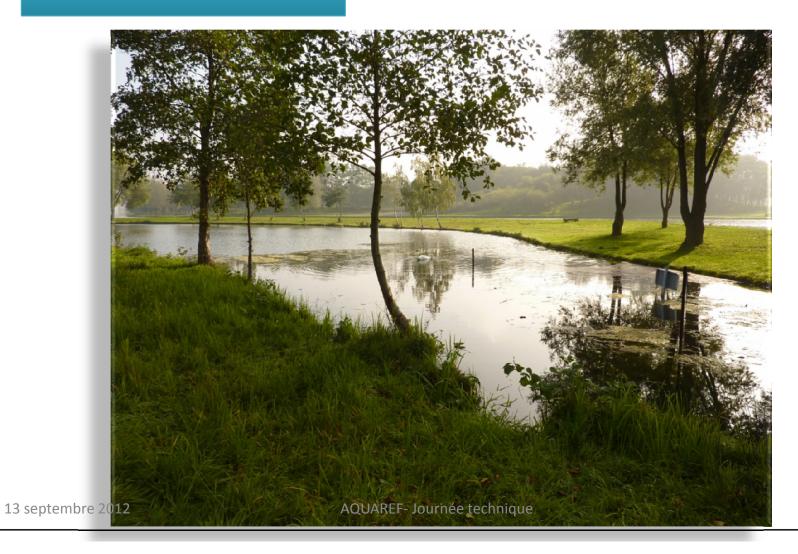
PFOS

Substance candidate à l'élargissement de la liste des substances prioritaires de la DCE

Analyse des perfluorés

Participer à la mise en place de la surveillance des composés perfluorés, notamment le PFOS

- Présenter des méthodes analytiques pour la mesure des perfluorés dans les différentes matrices du milieux aquatiques
- Examiner les sources de contamination interférants lors de la mesure des composés perfluorés


- Comme les phtalates, très répandus dans les matériaux de prélèvement, de préparation d'échantillon et les instruments analytiques
- A la différence des phtalates, composés peu volatils, contamination par l'air ambiant moins critique
- Composés hydrophiles et hydrophobes, risques d'adsorption sur les matériaux de préparation de prélévement (flacon), préparation d'échantillon (vial)

- 1. Prélèvement
- 2. Conservation d'échantillon
- 3. Préparation d'échantillon
- 4. Analyse chromatographique

1. Prélèvement

1. Prélèvement

Matériel de prélèvement

• Eviter les systèmes de prélèvement contenant des polymères fluorés (Ex:

PTFE: polytétrafluoréthylène)

AQUAREF-Journée technique

1. Prélèvement

Matériel de prélèvement

• Eviter les systèmes de prélèvement contenant des polymères fluorés (Ex:

PTFE: polytétrafluoréthylène)

1. Prélèvement

Matériel de prélèvement

• Eviter les systèmes de prélèvement contenant des polymères fluorés (Ex: PTFE: polytétrafluoréthylène)

1. Prélèvement

Matériel de prélèvement

• Eviter les systèmes de prélèvement contenant des polymères fluorés (Ex: PTFE: polytétrafluoréthylène)

1. Prélèvement

Nettoyage/ conditionnement du matériel de prélèvement

Avant le prélèvement:

• Calciner **toute la verrerie** nécessaire au prélèvement à 400 °C pendant 4 heures (dans un four à moufle)

13 septembre 2012

1. Prélèvement

Matériel de prélèvement

Afin de minimiser les sources de contamination

• Eviter l'utilisation de matériels intermédiaires en PTFE: Entonnoirs, louches etc... pour le remplissage des

flacons

1. Prélèvement

Matériel de prélèvement

Afin de minimiser les sources de contamination

- Utiliser du matériaux en polypropylène ou polyéthylène haute densité comme matériau de stockage.
- L'utilisation du verre a longtemps été déconseillé (phénomène d'adsorption supposé) mais de récentes études recommandent son utilisation.

Dans tous les cas éviter des bouchons contenant du PTFE

1. Prélèvement

Nettoyage/ conditionnement du matériel de prélèvement

Avant le prélèvement:

Si du matériel contenant du PTFE doit être utilisé:

Nettoyage avant utilisation sur le terrain.

Lavage par solvant d'extraction puis séchés à l'azote

Sur site, lavage avec la même matrice que l'échantillon avant le prélèvement

1. Prélèvement

Matériel de prélèvement

 Dans tous les cas, contrôler le niveau de contamination du système de prélèvement

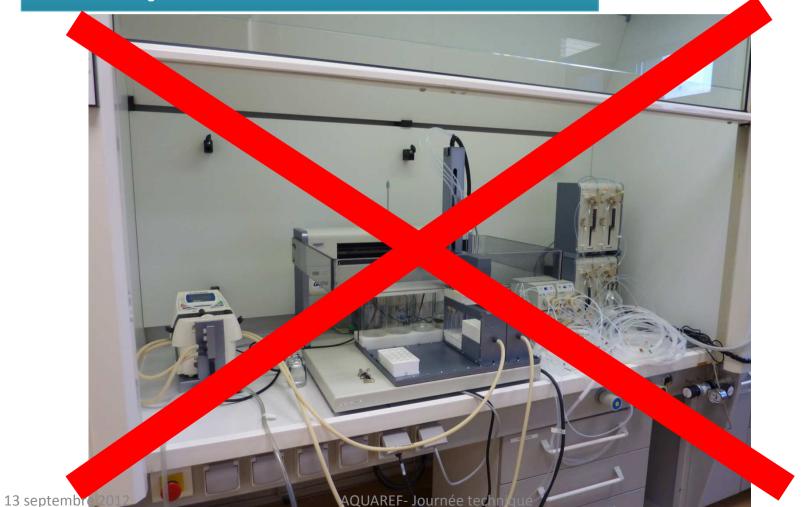
Effectuer des blancs du système de prélèvement

2. Conservation d'échantillon

2. Conservation d'échantillon

Recommandations

- N'ajouter aucun agent stabilisant
- Transporter dans une enceinte réfrigérée à 4 °C (± 2°C) sous un délai de 24 h.
- Analyser dès que possible.
- Si le stockage est inévitable, conserver à 4°C. Analyser dans un délai de 2 semaines (norme ISO 25101:2009)
- Remettre à température ambiante en vue de l'analyse


3. Préparation d'échantillon

28

3. Préparation d'échantillon

Cette photographie est montrée à titre d'illustration mais elle ne constitue pas un exemple de laboratoire type pour l'analyse des perfluorés

3. Préparation d'échantillon

Les mêmes remarques que pour le prélèvement s'appliquent

- Eviter dans la mesure du possible, le contact avec des matériaux en PTFE, notamment les bouchons ou tubulure
- Utiliser des matériaux en polypropylène ou polyéthylène haute densité comme matériel de stockage.
- L'utilisation du verre est également possible.
- •Si du matériel contenant du PTFE doit être utilisé, lavage avec le solvant d'extraction puis séchage à l'azote

3. Préparation d'échantillon

Afin de minimiser les sources de contamination

• Eviter l'utilisation de matériels de préparation d'échantillon en PTFE:

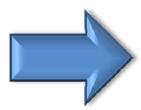
3. Préparation d'échantillon

• Des contaminations en composés perfluorés peuvent provenir des flacons utilisés pour l'analyse

Pour minimiser le risque de contamination

- Eviter flacons avec des bouchons en PTFE ou Viton®
- Préférer des bouchons en polyéthylène
- Utilisation de flacon en polypropylène possible afin de réduire les phénomènes d'adsorption

3. Préparation d'échantillon


Afin de minimiser les phénomènes d'adsorption sur les supports, Il est par ailleurs suggéré:

- De passer les échantillons aux ultrasons avant extraction
- Ajouter un peu de méthanol à l'échantillon
- de rincer le récipient avec du méthanol après extraction
- une combinaison de ces 3 procédures.

3. Préparation d'échantillon

 Dans tous les cas, contrôler le niveau de contamination lors de la préparation d'échantillon

Effectuer des blancs méthode

4. Analyse chromatographique

4. Analyse chromatographique

Vials

Membrane avec face intérieure en PTFE

Risque de contamination

•Une seule injection par vial

 Vial recouvert avec face intérieure avec aluminium (risque pollution)

4. Analyse chromatographique

- Des contaminations en composés perfluorés peuvent provenir du système chromatographique HPLC/UHPLC
 - Tubulure entre les flacons de la phase mobile et la pompe
 - Eléments de la pompe HPLC (vannes, joints,...)

4. Analyse chromatographique

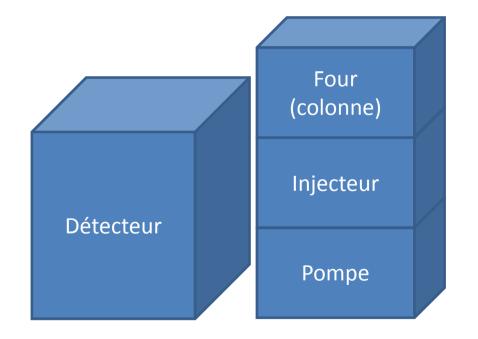
• Des contaminations en composés perfluorés peuvent provenir du système chromatographique HPLC/UHPLC

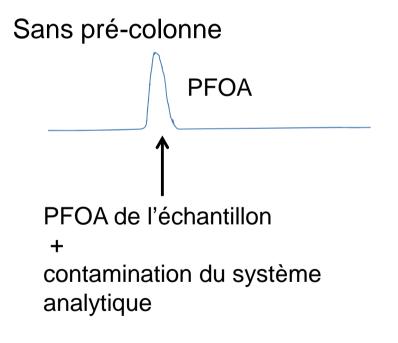
Analyse en mode isocratique

La contamination est intégrée dans le bruit de fond.

4. Analyse chromatographique

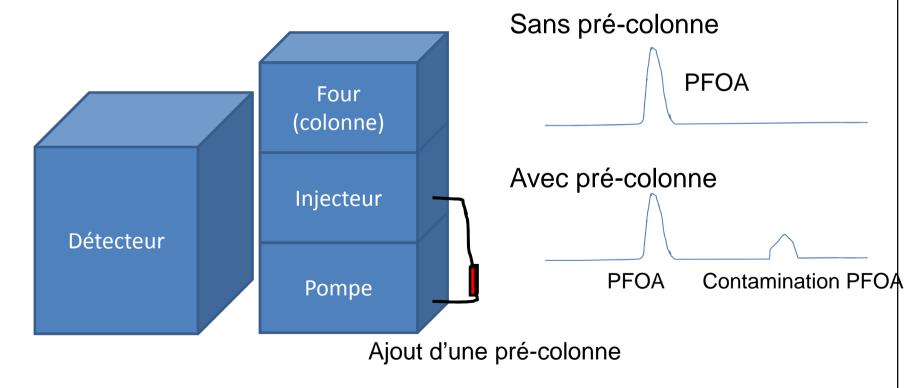
• Des contaminations en composés perfluorés peuvent provenir du système chromatographique HPLC/UHPLC


Analyse en mode gradient


- Remplacement ou isolation des matériaux en PTFE (remplacé par de l'acier ou du PEEK, vannes en titane)
- Ajout d'une pré-colonne (ou colonne de garde) entre la pompe et l'injecteur afin de différencier la contamination du système et le composé cible.

4. Analyse chromatographique

Analyse en mode gradient.



4. Analyse chromatographique

Analyse en mode gradient.

4. Analyse chromatographique

Analyse en mode gradient.

Avec pré-colonne production p

Ajout d'une pré-colonne

4. Analyse chromatographique

 Dans tous les cas, contrôler le niveau de contamination du système d'analyse

Effectuer des blancs du système analytique

Contexte

Analyse dans de l'eau

Analyse des boues

Analyse des biotes

Contexte

- Détermination du taux de fluor total
- Analyse par GC/MS avec étape de dérivation
- Depuis dévelopement interface électrospray, analyse des perfluorés par LC/MS/MS

Composés perfluorés

Acide perfluoro octanesulfonique (PFOS)

Substance candidate DCE

Acide perfluoro octanoïque (PFOA)

Analyse de l'eau

Norme ISO 25101:2009

Qualité de l'eau – Détermination du sulfonate de perfluorooctane (PFOS) et de l'octanoate perfluoré (PFOA) – Méthode par extraction en phase solide et chromatographie liquide/spectromètrie de masse pour des échantillons non filtrés

Fiche méthode Aquaref MA-09

Composés perfluorés PFOS/PFOA Méthode d'analyse dans l'eau brute

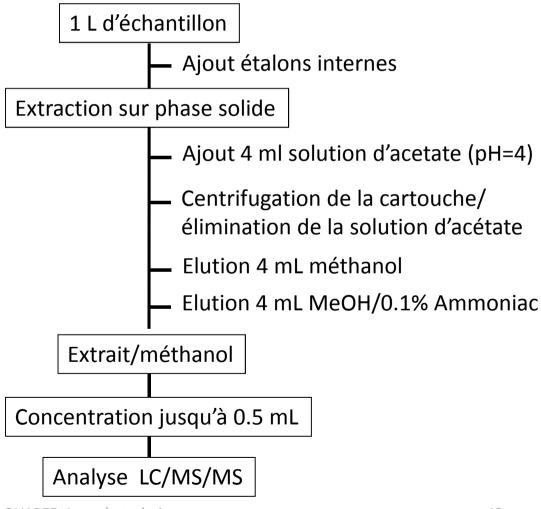
Méthode analytique

Norme ISO 25101:2009

Water quality – Determination of perfluoroctanesulfonate (PFOS) and perfluoroctanoate (PFOA) – Method for unfiltered samples using solid phase extraction and liquid/chromatography/mass spectrometry

Qualité de l'eau – Détermination du sulfonate de perfluorooctane (PFOS) et de l'octanoate perfluoré (PFOA) – Méthode par extraction en phase solide et chromatographie liquide/spectromètrie de masse pour des échantillons non filtrés

Eau potable, eau souterraine, de surface (eau douce et salée)

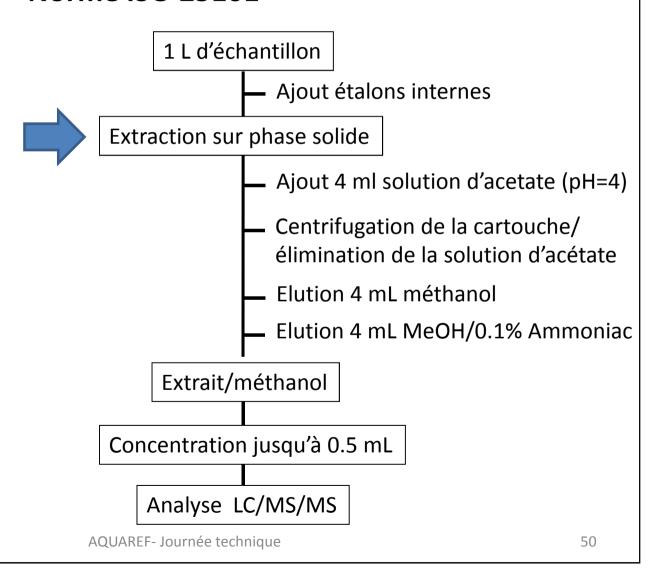

Gamme d'application

PFOS: 2 - 10000 ng/L

PFOA: 10 - 10000 ng/L

Norme ISO 25101

13 septembre 2012


AQUAREF- Journée technique

Norme ISO 25101

Recommandation de la norme

- Bouteille et flacon en polypropylène (polyéthylène)
- Vérification des rendements d'extraction sur chaque batch SPE
- cartouche en plastique non relarguant (polypropylène)

Test Norme ISO 25101

Problèmes de maitrise de l'extraction SPE

Fiche méthode MA-09 (Aquaref)

http://www.aquaref.fr/matrice/eaux/eau-douce/perfluores-dans-les-eaux

Composés perfluorés PFCs Méthode d'analyse dans l'eau brute

Eau douce de surface.

Eau souterraine.

Gamme de concentration: 2 à 120 ng/L.

1 L d'échantillon

Fixer le pH pour obtenir les acides sous formes neutres

Ajout étalons internes

Ajouter 40 g de NaCl

Ajuster le pH à 4 avec de l'acide sulfurique pur

Extraction liquide/liquide Méthyl-TertioButyl Ether (MTBE)

1 x 50 mL (10min) puis 2 x 25 mL (10 min/cycle)

Extraits/MTBE

Concentration jusqu'à 0.2 mL

Reprise jusqu'à 1 mL avec MeOH

Analyse LC/MS/MS

Conditions chromatographiques

Colonne: C18 (50 mm x 2,1 mm-2,5 µm)

Température colonne: 50 °C.

Phase mobile : mélange binaire, H2O (Solvant A) et MeOH contenant

chacun 20 mM d'acétate d'ammonium (Solvant B).

Méthode isocratique

Temps (minutes) Solvant A (%) Solvant B (%) 3 40 60

Débit : 0,4 mL/min.

Volume d'injection : 10 μL.

Conditions spectrométriques

Mode d'ionisation: ESI (-)

Composés	lons précurseurs (m/z)	Transitions (m/z)	D.t. ^c	T.C. ^a (V)	E.C. ^e (eV)
PFOA	412,9	$412.9 \rightarrow 368.9^{a}$	0,10	20	11
	412,9	$368,9 \rightarrow 169,0^{b}$	0,10	35	16
¹³ C₄-PFOA	416,9	$416,9 \rightarrow 371,9^{a}$	0,10	10	10
		$371,9 \rightarrow 172,0^{b}$	0,10	36	15
PFOS	498,9	$498.9 \rightarrow 98.9^{a}$	0,10	60	45
		$498,9 \rightarrow 79,9^{b}$	0,10	60	47
¹³ C ₄ -PFOS	502,9	$502,9 \to 98,9^{a}$	0,10	60	37
		$502,9 \to 79,9^{b}$	0,10	60	36

^a Transition de quantification,

^b Transition de confirmation,

^c Dwell time.

^d Tension de cône,

^e Energie de collision.

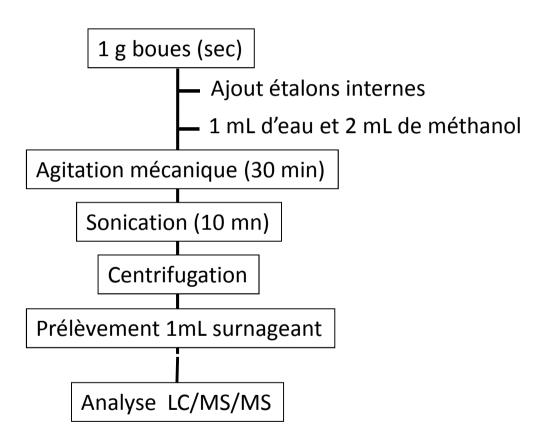
Méthode EPA 537

DETERMINATION OF SELECTED PERFLUORINATED ALKYL ACIDS IN **DRINKING WATER** BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

<u>Analyte</u>	<u>Acronym</u>	Chemical Abstract Services Registry Number (CASRN)	
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	_	
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	_	
Perfluorobutanesulfonic acid	PFBS	375-73-5	
Perfluorodecanoic acid	PFDA	335-76-2	
Perfluorododecanoic acid	PFDoA	307-55-1	
Perfluoroheptanoic acid	PFHpA	375-85-9	
Perfluorohexanesulfonic acid	PFHxS	355-46-4	
Perfluorohexanoic acid	PFHxA	307-24-4	
Perfluorononanoic acid	PFNA	375-95-1	
Perfluorooctanesulfonic acid	PFOS	1763-23-1	
Perfluorooctanoic acid	PFOA	335-67-1	
Perfluorotetradecanoic acid	PFTA	376-06-7	
Perfluorotridecanoic acid	PFTrDA	72629-94-8	
Perfluoroundecanoic acid	PFUnA	2058-94-8	

Analyse des boues

Fiche méthode Aquaref MA-28

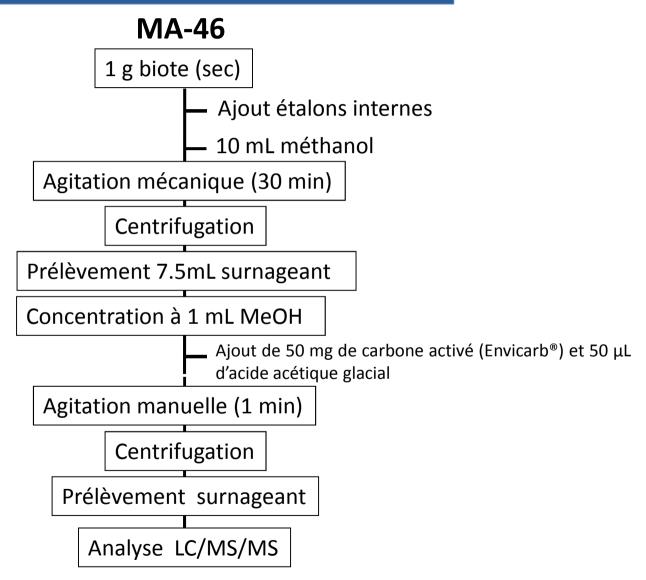

Composés perfluorés PFCs

Matrice: Boues de stations d'épuration.

Gamme d'application: 10 à 100 ng/g poids sec.

MA-28

Analyse des biotes


Fiche méthode Aquaref MA-46

Composés perfluorés PFCs Méthode d'analyse dans les biotes

Matrice: Muscle (truite)

Gamme d'application: 5 à 200 ng/g poids sec

Analyse des biotes

Modification du gradient HPLC

Problème d'encrassement de la colonne

Séquence de la vage de la colonne plus important

Temps (minutes)	SolvantA (%)	Solvant B (%)	Étape
0	40	60	Élution des
6	40	60	composés d'intérêt
7	5	95	Rinçage de la
11	5	95	colonne de
11.1	40	60	chromatographie
16	40	60	

5. Bilan et conclusion

- Eviter d'utiliser des matériaux contenant des polymères fluorés pour le prélèvement et l'analyse
- Contrôler la contamination et ses sources:

Effectuer des blancs

- Prélèvement
- Prétraitement d'échantillon
- Système chromatographique

5. Bilan et conclusion

- Méthode d'analyse par LC/MS/MS
 - Eaux
 - Boues
 - Biotes
- Attention aux pics systèmes lors de l'analyse chromatographique

Bibliographie

- Aquaref : Fiche méthode MA-09 : Composés perfluorés PFCs
 Méthode d'analyse dans l'eau brute
 http://www.aquaref.fr/matrice/eaux/eau-douce/perfluores-dans-les-eaux
- Aquaref : Fiche méthode MA-28 : Composés perfluorés PFCs Méthode d'analyse dans les boues http://www.aquaref.fr/domaine/chimie/famille-des-pfcs-methode-analyse-dans-les-boues
- Aquaref : Fiche méthode MA-46 : Composés perfluorés PFCs Méthode d'analyse dans les biotes
- Norme ISO 25101:2009 Qualité de l'eau Détermination du sulfonate de perfluoroctane (PFOS) et de l'octanoate perfluoré (PFOA) Méthode par extraction en phase solide et chromatographie liquide/spectromètrie de masse pour des échantillons non filtrés
- Anses Campagne nationale d'occurrence des composés alkyls perfluorés dans les eaux destinées à la consommation humaine - 2011
- EPA method 537 Determination of selected perfluorinated alkyl acids in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS)