

Etude des données de surveillance des eaux souterraines (base ADES)

Qualité des données et des métadonnées

JP Ghestem Avec la collaboration de C Auterives

Septembre 2020

Document final

Contexte de programmation et de réalisation

Ce rapport a été réalisé dans le cadre du programme scientifique et technique AQUAREF pour l'année 2019, au titre de l'action E2.2a du Thème E « Garantir la qualité des données bancarisées»

Auteur (s):

Jean-Philippe GHESTEM BRGM jp.ghestem@brgm.fr

avec la collaboration de Chrystelle Auterives BRGM c.auterives@brgm.fr

Vérification du document :

Nathalie GUIGUES LNE nathalie.guigues@lne.fr

Bénédicte LEPOT INERIS benedicte.lepot@ineris.fr

Pauline MOREAU BRGM p.moreau@brgm.fr

Les correspondants

OFB: Nicolas GAURY, n.gaury@ofb.fr

BRGM: Jean-Philippe GHESTEM jp.ghestem@brgm.fr

<u>Référence du document</u>: Jean-Philippe GHESTEM - Etude des données de surveillance des eaux souterraines (base ADES) -Qualité des données et des métadonnées - Rapport AQUAREF 2020 - 71 p

Droits d'usage : Accès libre

Couverture géographique : International Niveau géographique : National

Niveau de lecture : Professionnels, experts

Nature de la ressource : Document

SOMMAIRE

1. Introduction 1.1. Contexte 1.2. Méthodologie	7 7 7	
 Jeu de données Aperçu global par Agence/Office de l'eau Aperçu par substance 	9 9 9	
3. Code « Remarque Analyse » et champ « Limite de quantification »	13	
4. Incertitude analytique	15	
5. Accréditation des laboratoires	19	
6. Méthode d'analyse	21	
7. Code fraction	23	
8. Limites de quantification (conformité aux exigences de la directive QAQC)	25	
 9. Etude spécifique de quelques substances 9.1. Etude de fréquence de quantification 9.2. Statistiques sur les données de surveillance 	34 34 40	
10. Conclusion	41	
11. Bibliographie	43	
Liste des annexes :		
Annexe 1 Nombre de données exploitées par année et par substance Annexe 2 Statistiques sur les données de surveillance	44 53	

ETUDE DES DONNEES DE SURVEILLANCE DES EAUX SOUTERRAINES (BASE ADES)-QUALITE DES DONNEES ET DES METADONNEES - JP GHESTEM

RESUME

En parallèle de travaux menés en 2019-2020 au BRGM sur l'exploitation des données de surveillance des eaux souterraines obtenues en application de l'arrêté surveillance paru en 2015, cette étude menée dans le cadre du programme d'actions Aquaref, a pour objectif d'étudier les données de la base ADES sous l'angle de leur qualité (principalement en termes de conformité règlementaire) et de la qualité des métadonnées associées. Il s'agit notamment de vérifier l'application des exigences réglementaires de l'arrêté surveillance (17/10/2018) et de l'arrêté agrément (27/10/2011). Un jeu important de données a été utilisé, couvrant les années 2010-2018 pour les réseaux de contrôle de surveillance et de contrôle opérationnel des agences et offices de l'eau. Les substances choisies pour l'étude sont les 225 substances de l'arrêté surveillance de 2015.

Dans le jeu global de données, il a été observé que certaines substances disposaient de moins de données de surveillance que d'autres : à titre d'exemple on peut citer les dioxines (substances complexes à analyser, sur des filières analytiques spécifiques et coûteuses), le fipronil sulfone (métabolite du fipronil et uniquement inscrit dans la surveillance prévue pour les Départements et Régions d'Outre-Mer) ou encore l'acide acétylsalicylique (substance complexe à analyser sur laquelle des doutes existent quant à la fiabilité des données et notamment sur une confusion possible avec l'acide salicylique ; une réflexion sur les modalités de surveillance de cette substance semble nécessaire).

Concernant les codes remarques, utilisés dans les échanges de données pour tracer le caractère quantifié ou pas d'un résultat, il a été noté l'utilisation de codes variés rendant une exploitation globale des résultats complexe et fastidieuse. Les principaux codes utilisés sont le code 1 (quantifié) et le code 10 (non quantifié). Il s'avère qu'environ 10% des données sont bancarisées avec un code 2 (non détecté) avec des pourcentages allant de 5 à 58% en fonction des bassins. Sauf besoin spécifique des gestionnaires, compte tenu de l'absence de toute référence à la limite de détection dans les textes réglementaires et compte tenu des exigences de limites de quantification déjà basses pour beaucoup de substances, il semble préférable de généraliser l'utilisation du code 10 afin de ne pas biaiser les estimations de fréquence de quantification. Par ailleurs, en cas d'utilisation du code 2 ou lorsque la substance est quantifiée, la seule possibilité de disposer de l'information concernant la limite de quantification du laboratoire est le champ dédié à cette information. Or celui-ci n'est pas renseigné dans 30% des cas.

Des exigences ont été fixées aux états membres et aux laboratoires par la directive européenne sur l'assurance et le contrôle qualité concernant les incertitudes et l'accréditation. L'information sur l'incertitude sur les résultats est globalement peu disponible (en 2018, environ 35% des données sont associées à une incertitude) mais les incertitudes bancarisées semblent plus homogènes que par le passé. En ce qui concerne l'accréditation, pour les années les plus récentes 2017-2018, seulement 60% des résultats y font référence et l'information sur le caractère accrédité ou pas du résultat est disponible pour 70% des données. Aucune référence à l'agrément n'est disponible.

La méthode d'analyse est une métadonnée importante dès lors que des données doivent être expertisées, par exemple pour expliquer d'éventuelles ruptures dans les chroniques de données. Certains codes SANDRE « génériques » sont utilisés par les laboratoires mais ne renseignent nullement sur la méthode. La situation s'est améliorée ces dernières années mais il reste encore environ 30% de résultats faisant référence à ces codes en 2018 (contre 60% en 2010). L'utilisation de ces codes devrait être très fortement limitée et un gain en précision sur la méthode utilisée devrait être obtenu par la mise en place des propositions d'Aquaref pour des codes méthodes plus informatifs.

L'arrêté surveillance de 2015 a précisé les exigences analytiques pour la surveillance des métaux, à savoir une analyse de la fraction dissoute. Les modifications de pratiques sont bien visibles dans la base ADES à travers l'évolution des codes fractions. Sur les années 2017-2018, 90% des résultats de métaux sont acquis sur la fraction dissoute. Il serait néanmoins utile de comprendre si les 10% analysés sur l'eau brute sont liés à des objectifs spécifiques ou à des erreurs de bancarisation.

Des exigences sont également fixées aux laboratoires en terme de limite de quantification par l'arrêté et l'avis agrément. Pour 166 substances parmi les 195 disposant d'une limite de

quantification exigée en 2015, plus de 75% des résultats sont rendus avec une limite de quantification conforme (période 2016-2018). Toutes substances confondues, 95% des données ont une limite de quantification conforme sur l'année 2018. Parmi les substances identifiées « à problème » on peut citer trichloroéthane-1,1,1, ciprofloxacine, ofloxacine, daminozide, 2-hydroxy-ibuprofène, 4-nonylphénols ramifiés, di(2-éthylhexyl)phtalate.

Concernant les pesticides, en 2018, l'exigence européenne d'une limite de quantification inférieure ou égale à 0,03 µg/l n'est pas respectée pour le triclosan, le dichloropropène-1,3 et l'hydrazide maléique. A un degré moindre, des difficultés en termes de limite de quantification existent aussi pour fosétyl, daminozide et N,N-dimethyl-N'-p-tolylsulphamide.

D'autres difficultés d'exploitation des données de la base sont apparues à travers ce travail : par exemple la difficulté à gérer de multiples unités. Sur ce point Aquaref renouvelle sa proposition de supprimer de nombreuses unités telles que $\mu g/l$ As, $\mu g/l$ Pb... pour ne conserver que l'unité $\mu g/l$.

Enfin, quelques cas de substances spécifiques (phtalates, bisphénol, caféine...) sujettes à des biais analytiques ou d'échantillonnage ont été étudiés afin de voir si les données disponibles permettaient d'identifier ces biais. L'exploitation des fréquences de quantification (calculées par rapport à une limite de quantification unique) en fonction des années et des bassins, montre certaines évolutions suspectes sans qu'il soit malheureusement possible de conclure formellement. Ces exploitations permettent cependant de mettre en lumière ces données suspectes et le cas échéant d'étudier plus en détail les interprétations possibles. Il est aussi fourni aux gestionnaires des statistiques sur les données de surveillance (ex : percentile 95, médiane) pour chaque substance afin qu'ils puissent disposer de critères permettant par exemple de déclencher des vérifications auprès des laboratoires, évitant ainsi la bancarisation de résultats aberrants.

Mots-clés: base de données; surveillance; qualité; micropolluants; eaux souterraines

Rapport final

BRGM/RP 70001-FR septembre 2020

Étude réalisée dans le cadre des projets de Service public du BRGM 2020

> JP Ghestem Avec la collaboration de C Auterives

Vérificateur:

Nom : Pauline MOREAU

Fonction: Chef de Projet

Date: 19/06/20

Signature:

Approbateur:

Nom: Laurence AMALRIC

Fonction Responsable d'unité

Date: 30/07/20

Signature

Le système de management de la qualité et de l'environnement est certifié par AFNOR selon les normes ISO 9001 et ISO 14001.

Contact : qualite@brgm.fr

Mots-clés : base de données ; surveillance ; qualité ; micropolluants ; eaux souterraines
En bibliographie, ce rapport sera cité de la façon suivante :
GHESTEM J P. (2020) – Etude des données de surveillance des eaux souterraines (base ADES) - Qualité des données et des métadonnées. Rapport final. BRGM/RP-70001-FR, 71 p., 25 ill.,.
© BRGM, 2020 , ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.

Synthèse

n parallèle de travaux menés en 2019-2020 au BRGM sur l'exploitation des données de surveillance des eaux souterraines obtenues en application de l'arrêté surveillance paru en 2015, cette étude menée dans le cadre du programme d'actions Aquaref, a pour objectif d'étudier les données de la base ADES sous l'angle de leur qualité (principalement en termes de conformité règlementaire) et de la qualité des métadonnées associées. Il s'agit notamment de vérifier l'application des exigences réglementaires de l'arrêté surveillance (17/10/2018) et de l'arrêté agrément (27/10/2011). Un jeu important de données a été utilisé, couvrant les années 2010-2018 pour les réseaux de contrôle de surveillance et de contrôle opérationnel des agences et offices de l'eau. Les substances choisies pour l'étude sont les 225 substances de l'arrêté surveillance de 2015.

Dans le jeu global de données, il a été observé que certaines substances disposaient de moins de données de surveillance que d'autres : à titre d'exemple on peut citer les dioxines (substances complexes à analyser, sur des filières analytiques spécifiques et coûteuses), le fipronil sulfone (métabolite du fipronil et uniquement inscrit dans la surveillance prévue pour les Départements et Régions d'Outre-Mer) ou encore l'acide acétylsalicylique (substance complexe à analyser sur laquelle des doutes existent quant à la fiabilité des données et notamment sur une confusion possible avec l'acide salicylique ; une réflexion sur les modalités de surveillance de cette substance semble nécessaire).

Concernant les codes remarques, utilisés dans les échanges de données pour tracer le caractère quantifié ou pas d'un résultat, il a été noté l'utilisation de codes variés rendant une exploitation globale des résultats complexe et fastidieuse. Les principaux codes utilisés sont le code 1 (quantifié) et le code 10 (non quantifié). Il s'avère qu'environ 10% des données sont bancarisées avec un code 2 (non détecté) avec des pourcentages allant de 5 à 58% en fonction des bassins. Sauf besoin spécifique des gestionnaires, compte tenu de l'absence de toute référence à la limite de détection dans les textes réglementaires et compte tenu des exigences de limites de quantification déjà basses pour beaucoup de substances, il semble préférable de généraliser l'utilisation du code 10 afin de ne pas biaiser les estimations de fréquence de quantification. Par ailleurs, en cas d'utilisation du code 2 ou lorsque la substance est quantifiée, la seule possibilité de disposer de l'information concernant la limite de quantification du laboratoire est le champ dédié à cette information. Or celui-ci n'est pas renseigné dans 30% des cas.

Des exigences ont été fixées aux états membres et aux laboratoires par la directive européenne sur l'assurance et le contrôle qualité concernant les incertitudes et l'accréditation. L'information sur l'incertitude sur les résultats est globalement peu disponible (en 2018, environ 35% des données sont associées à une incertitude) mais les incertitudes bancarisées semblent plus homogènes que par le passé. En ce qui concerne l'accréditation, pour les années les plus récentes 2017-2018, seulement 60% des résultats y font référence et l'information sur le caractère accrédité ou pas du résultat est disponible pour 70% des données. Aucune référence à l'agrément n'est disponible.

La méthode d'analyse est une métadonnée importante dès lors que des données doivent être expertisées, par exemple pour expliquer d'éventuelles ruptures dans les chroniques de données. Certains codes SANDRE « génériques » sont utilisés par les laboratoires mais ne renseignent nullement sur la méthode. La situation s'est améliorée ces dernières années mais il reste encore environ 30% de résultats faisant référence à ces codes en 2018 (contre 60% en 2010).

L'utilisation de ces codes devrait être très fortement limitée et un gain en précision sur la méthode utilisée devrait être obtenu par la mise en place des propositions d'Aquaref pour des codes méthodes plus informatifs.

L'arrêté surveillance de 2015 a précisé les exigences analytiques pour la surveillance des métaux, à savoir une analyse de la fraction dissoute. Les modifications de pratiques sont bien visibles dans la base ADES à travers l'évolution des codes fractions. Sur les années 2017-2018, 90% des résultats de métaux sont acquis sur la fraction dissoute. Il serait néanmoins utile de comprendre si les 10% analysés sur l'eau brute sont liés à des objectifs spécifiques ou à des erreurs de bancarisation.

Des exigences sont également fixées aux laboratoires en terme de limite de quantification par l'arrêté et l'avis agrément. Pour 166 substances parmi les 195 disposant d'une limite de quantification exigée en 2015, plus de 75% des résultats sont rendus avec une limite de quantification conforme (période 2016-2018). Toutes substances confondues, 95% des données ont une limite de quantification conforme sur l'année 2018. Parmi les substances identifiées « à problème » on peut citer trichloroéthane-1,1,1, ciprofloxacine, ofloxacine, daminozide, 2-hydroxy-ibuprofène, 4-nonylphénols ramifiés, di(2-éthylhexyl)phtalate.

Concernant les pesticides, en 2018, l'exigence européenne d'une limite de quantification inférieure ou égale à 0,03 µg/l n'est pas respectée pour le triclosan, le dichloropropène-1,3 et l'hydrazide maléique. A un degré moindre, des difficultés en termes de limite de quantification existent aussi pour fosétyl, daminozide et N,N-dimethyl-N'-p-tolylsulphamide.

D'autres difficultés d'exploitation des données de la base sont apparues à travers ce travail : par exemple la difficulté à gérer de multiples unités. Sur ce point Aquaref renouvelle sa proposition de supprimer de nombreuses unités telles que µg/l As, µg/l Pb... pour ne conserver que l'unité µg/l.

Enfin, quelques cas de substances spécifiques (phtalates, bisphénol, caféine...) sujettes à des biais analytiques ou d'échantillonnage ont été étudiés afin de voir si les données disponibles permettaient d'identifier ces biais. L'exploitation des fréquences de quantification (calculées par rapport à une limite de quantification unique) en fonction des années et des bassins, montre certaines évolutions suspectes sans qu'il soit malheureusement possible de conclure formellement. Ces exploitations permettent cependant de mettre en lumière ces données suspectes et le cas échéant d'étudier plus en détail les interprétations possibles. Il est aussi fourni aux gestionnaires des statistiques sur les données de surveillance (ex : percentile 95, médiane) pour chaque substance afin qu'ils puissent disposer de critères permettant par exemple de déclencher des vérifications auprès des laboratoires, évitant ainsi la bancarisation de résultats aberrants.

Sommaire

1. Introduction	7
1.1. CONTEXTE	7
1.2. METHODOLOGIE	7
2. Jeu de données	9
2.1. APERÇU GLOBAL PAR AGENCE DE L'EAU/OFFICE DE L'EAU	9
2.2. APERÇU PAR SUBSTANCE	9
3. Code « Remarque Analyse » et champ « Limite de quantification »	13
4. Incertitude analytique	15
5. Accréditation des laboratoires	19
6. Méthode d'analyse	21
7. Code fraction	23
8. Limites de quantification (conformité aux exigences de la directive QAQC)	25
9. Etude spécifique de quelques substances	34
9.1. ETUDE DE FREQUENCES DE QUANTIFICATION	34
9.2. STATISTIQUES SUR LES DONNEES DE SURVEILLANCE	40
10. Conclusion	41
11. Bibliographie	43
Liste des illustrations	
Illustration 1 : Nombre de données extraites par année (en milliers)	9
Illustration 2 : Nombre de stations par AE ou OE	9
Illustration 3 : Nombre de données par substance et par année (25 substances les moins recherchées) –Métropole et DROM	11
Illustration 4 : Nombre de données par substance et par année (25 substances les plus recherchées) – Métropole et DROM	12
Illustration 5 : Pourcentage des codes remarques par gestionnaire sur la période 2010-2018	14
Illustration 6 : Pourcentage de champ « limite de quantification » rempli (nd : non déterminé) Résultats 2019 données à titre indicatif (non complets)	

	Pourcentage de champ « Incertitude » rempli (données métropole et DROM)15
Illustration 8 : N	Médiane des incertitudes par substance (25 incertitudes les plus faibles)
Illustration 9 : N	Médiane des incertitudes par substance (25 incertitudes les plus fortes)
Illustration 10 :	Informations relatives au champ « accréditation » (par gestionnaire et en %)19
Illustration 11 :	Informations relatives au champ « accréditation » (par année et en %) – Métropole et DROM20
Illustration 12 :	Répartition par année des codes méthodes non « informatifs »21
Illustration 13:	Répartition par année des codes fractions pour les métaux (dissous : code 3 ; inconnu : code 22 ; eau brute : code 23)23
Illustration 14 :	Répartition par gestionnaire pour les années 2017-2018 des codes fractions 3 et 23 pour les métaux24
Illustration 15 :	Nombre de substances en fonction du pourcentage de données pour lesquelles la LQ est conforme à l'avis agrément 2015 (pour les années 2016-2018)26
Illustration 16 :	Pourcentage de données pour lesquelles les LQ sont conformes à l'avis agrément 2015 (cf texte pour le choix des substances)29
Illustration 17 :	Pourcentage de données conformes aux exigences de performances (LQ) de l'avis agrément 201530
Illustration 18 :	Médiane des rapports LQ/LQ _{avis} par substance et par gestionnaire (cf texte pour la liste des substances)32
Illustration 19 :	Pourcentage de données respectant une LQ inférieure à 0.03 µg/l pour quelques pesticides (liste : cf texte)- Les LQ de l'avis agrément 2015 sont rappelées (LQ 2015 et la LQ visée à fin 2018 – so=sans objet)33
Illustration 20 :	Fréquences de quantification pour le DEHP (code 6616) et nombre de données considérées - Limite de quantification utilisée : 0,4 µg/l35
Illustration 21 :	Fréquences de quantification pour le DEHP (code 6616) pour un jeu de stations limité (cf texte) - Limite de quantification utilisée : 0,4 µg/l36
Illustration 22 :	Fréquences de quantification pour le N butyl phtalate (code 1462) et nombre de données - Limite de quantification utilisée : 0,1 µg/l36
Illustration 23 :	Fréquences de quantification pour le Bisphénol A (code 2766) et nombre de données - Limite de quantification utilisée : 0,1 µg/l37
Illustration 24 :	Fréquences de quantification pour la caféine (code 6519) et nombre de données - Limite de quantification utilisée : 0,1 µg/l38
Illustration 25 :	Fréquences de quantification pour la deséthyl déisopropyl atrazine (code 1830) - Limite de quantification utilisée : 0,1 µg/l (pour cette substance les données dont fournies en tableau et en graphe pour une meilleure lisibilité)
Illustration 26 :	Nombre de données pour la deséthyl déisopropyl atrazine (code 1830) - Limite de quantification utilisée : 0,1 µg/l40
lioto doo s	mnavaa
Liste des a	IIIIEXE2

Annexe 1	Nombre de données exploitées par année et par substance	44
Annexe 2	Statistiques sur les données de surveillance	53

1. Introduction

1.1. CONTEXTE

L'arrêté dit « surveillance » du 7 Aout 2015 [1] (révisé en 2018 [2]) établit les programmes français de surveillance de l'état des eaux. Il s'applique aux eaux de surface et aux eaux souterraines. Le présent rapport s'intéresse uniquement au cas des eaux souterraines.

Cet arrêté répond notamment aux exigences de la directive cadre européenne sur l'eau [3] et de ses directives filles dont la directive « eau souterraine » [4]. La directive cadre européenne sur l'eau s'accompagne également d'une directive sur l'assurance et le contrôle qualité 2009/90/CE [5] qui fixe aux états membres des exigences en matière par exemple d'accréditation des laboratoires, de performances (LQ) ou d'incertitude.

225 substances sont citées dans l'arrêté surveillance pour les eaux souterraines et sont surveillées par les agences (AE) et les offices (OE) de l'eau, à des fréquences variables suivant les micropolluants. On distingue des campagnes régulières, intermédiaires et photographiques (cette dernière n'ayant lieu qu'une fois par cycle de 6 ans).

La liste des substances a été élaborée notamment grâce aux résultats de campagnes prospectives nationales de recherche de substances émergentes qui se sont déroulées en 2011 et 2012 [6][7]. Afin de réviser cette liste et prioriser les nouvelles substances à surveiller, de nouvelles campagnes sont en préparation dans le cadre du Réseau de Surveillance Prospective mis en place en 2017 par le Ministère de la Transition écologique et solidaire (MTES) et l'Agence Française pour la Biodiversité (AFB).

Dans ce contexte, des travaux d'exploitation des données de surveillance acquises depuis 2011 et plus spécifiquement depuis 2015 sont menés en 2019-2020 par le BRGM afin de réaliser une étude critique des méthodologies de priorisation des substances à surveiller et préparer ainsi les futures campagnes prospectives.

En parallèle, le BRGM a proposé dans le cadre des programmes Aquaref et de son contrat de coopération 2019-2020 avec l'Office Français de la Biodiversité (OFB), d'étudier les données de surveillance de la base ADES (portail d'Accès aux Données d'Eaux Souterraines, qui collecte l'ensemble des données de surveillance des eaux souterraines) sous l'angle de leur qualité (principalement leur conformité réglementaire) et de la qualité de leur bancarisation et des métadonnées associées. Les aspects liés à la fiabilité des analyses ne sont pas pris en compte (à l'exception du chapitre 9). L'objectif est de faire des recommandations qui permettront d'améliorer soit la qualité des données soit la qualité de leur bancarisation et ainsi les rendre mieux exploitables. La période considérée est la période 2010-2019 mais la période 2016-2018 est plus spécifiquement étudiée car représentative de la surveillance mise en application à partir de l'arrêté surveillance de 2015 (révisé en 2018).

1.2. METHODOLOGIE

Des extractions de la banque ADES ont été réalisées sur les données qualité des années 2010 à 2019. Sur ces 10 années, les données relatives au réseau de contrôle de surveillance (code Sandre 0000000071) et au réseau de contrôle opérationnel (code Sandre 0000000072) ont été extraites par agence et office de l'eau (AE / OE). Les signes suivants sont utilisés pour les agences et offices de l'eau :

- MAR (OE Martinique)
- AG (AE Adour Garonne)

- AP (AE Artois Picardie)
- GUA (OE Guadeloupe)
- GUY (OE Guyane)
- LB (AE Loire Bretagne)
- MAY (OE Mayotte)
- REU (OE Réunion)
- RM (AE Rhin Meuse)
- RMC (AE Rhône Méditerranée et Corse)
- SN (AE Seine Normandie).

Les données de l'année 2019 sont parfois présentées mais pour certains bassins elles sont incomplètes ou partiellement bancarisées au moment de l'extraction et ne seront donc que rarement prises en référence. Il faut noter aussi que les données des campagnes exceptionnelles des années 2011 et 2012 sont intégrées aux données traitées.

Les extractions ont été réalisées à partir de la liste de 225 substances de l'arrêté surveillance du 7/8/2015 quelque que soit le mode et notamment la fréquence de surveillance (régulier, intermédiaire ou photographique). Seuls les micropolluants sont étudiés dans ce rapport.

Les informations retrouvées dans la base ADES sont « formatées » par l'utilisation des référentiels SANDRE et également par les scénarios d'échanges de données EDILABO. Ces formats sont basés, pour un certain nombre de champs informatifs, sur une codification nationale. Dans les scénarios d'échange de données, certains champs sont obligatoires et d'autres sont facultatifs.

2. Jeu de données

2.1. APERÇU GLOBAL PAR AGENCE DE L'EAU/OFFICE DE L'EAU

Afin d'avoir un aperçu global des données exploitées, le nombre de données des différents bassins ainsi que le nombre de stations sont présentés ci-dessous (Illustration 1 et Illustration 2). Le nombre total de données est de 8,5 millions.

Année	MAR	AG	AP	GUA	GUY	LB	MAY	REU	RM	RMC	SN
2010	4,4	48,0	14,3	1,2	0,8	91,1	0,6	6,2	138	211	209
2011	3,7	58,2	18,0	1,4	1,1	122		6,3	146	225	227
2012	4,9	49,3	14,3	2,6	1,2	112	0,2	7,4	147	223	205
2013	3,7	38,1	37,6	1,6	0,5	118		10,7	136	300	205
2014	4,3	33,5	65,0	3,0	1,6	125	0,1	10,4	136	221	249
2015	4,9	35,8	48,0	1,7	3,5	123		10,1	125	227	69,6
2016	2,7	49,0	48,5	1,7	5,1	140	0,3	9,5	135	227	375
2017	2,8	54,4	33,2	1,9	2,9	157	1,4	13,1	155	333	407
2018	2,8	46,6	143,	2,5	1,8	141	0,5	15,6	98,9	321	363
2019	1,6	111	3,7	2,9		121	0,3	1,0	4,9	299	12,4
Total	35,9	524	425	20,5	18,6	125	3,3	90,4	1224	2592	2326

Illustration 1 : Nombre de données extraites par année (en milliers)

Année	MAR	AG	AP	GUA	GUY	LB	MAY	REU	RM	RMC	SN
2010	21	345	180	13	13	344	10	28	270	505	536
2011	20	344	179	13	13	357		28	282	498	547
2012	22	346	173	13	15	362	1	29	258	510	542
2013	20	354	179	13	13	355		28	255	649	529
2014	21	331	176	13	13	353	2	29	267	489	522
2015	21	314	178	14	13	361		28	291	497	261
2016	22	327	173	14	15	360	7	27	286	483	538
2017	22	328	138	15	18	362	7	29	289	659	545
2018	21	313	176	14	17	358	7	27	284	657	547
2019	3	318	31	13	.,	350	6	11	51	643	112

Illustration 2 : Nombre de stations par AE ou OE

2.2. APERÇU PAR SUBSTANCE

Le nombre de données par substance et par année est présenté en Annexe 1. Les illustrations 3 et 4 présentent les 25 substances les moins et les plus recherchées. Les substances sont classées par ordre croissant du nombre de données disponibles. Les substances les plus recherchées sont les produits phytosanitaires historiques surveillées bien avant la parution de

l'arrêté surveillance de 2015 (triazines et métabolites, chloroacétamides, glyphosate, ...). Pour chaque paramètre le nombre total de données est de l'ordre de 70000 sur les 10 ans.

Le dioctylétain est à l'inverse la substance pour laquelle le nombre de données est le plus faible (uniquement 700 données environ). Cette substance a été introduite dans la surveillance en 2015 mais uniquement pour les DOM. D'autres substances sont également listées dans les tableaux complémentaires DOM uniquement (fipronil sulfone, chlordécone 5b hydro). Concernant le fipronil sulfone, il pourrait être envisagé d'intégrer ce métabolite dans les listes de surveillance de métropole (même si elle est y est déjà surveillée, hors des listes réglementaires), la substance mère y étant très largement recherchée. Les dioxines ont également été peu recherchées (parmi les substances des campagnes dites photographiques). Il s'agit de substances complexes à analyser, avec des filières analytiques très spécifiques et couteuses.

Parmi les substances les moins surveillées, on trouve également le métabolite du tolytriazole N,N-Dimethyl-N'-p-tolylsulphamide (4256 données) introduit dans l'arrêté de 2015 et qui est encore peu proposé par les laboratoires (Aquaref a édité une fiche méthode pour cette substance en 2017 Fiche MA71 [8]). Enfin, l'acide acétylsalicylique (5790 données) est une substance complexe à analyser, introduite dans l'arrêté surveillance en 2015 et pour laquelle des doutes peuvent exister sur certains résultats (possible confusion avec l'acide salycilique). Elle est donc également sans doute pas proposée de façon systématique par les laboratoires.

Paramètre	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
Dioctylétain cation						102	29	440	86	22	679
1,2,3,4,6,7,8,9-Octachlorodiber	nzo-p-dioxine	971			358		19	475	648	474	2945
Octachlorodibenzofuranne		972			358		19	475	648	474	2946
1,2,3,4,6,7,8- Heptachlorodibenzofurane		1023			358		19	475	648	474	2997
1,2,3,4,6,7,8-Heptachlorodiben	zo-p-dioxine	1023			358		19	475	648	474	2997
1,2,3,4,7,8,9- Heptachlorodibenzofurane		1023			358		19	475	648	474	2997
Indice hydrocarbure			502	769	97	98	135	519	296	845	3292
Chlordecone-5b-hydro	56	58	69	60	74	1012	944	1009	94	26	3402
Fipronil sulfone	17	14	44	28	26	938	919	988	555	19	3548
N,N-Dimethyl-N'-p- tolylsulphamide			30	2	2	919	1004	1220	783	296	4256
Chlorates					11	1	1016	1560	1336	492	4427
Acide acetylsalicylique			30	2	11		73	2100	3097	477	5790
Sotalol		1021	30	8	6		30	1850	3093	477	6515
1,7-Dimethylxanthine		998						2099	3093	477	6667
Cotinine		1027		6	2		41	2044	3093	477	6690
Tramadol		1027		6	2		41	2099	3093	477	6745
2-Hydroxy Ibuprofen			30	2	368		71	2099	3301	891	6762
Dibromoacétonitrile						934	1894	2067	804	1218	6917
Bromure	4	10	4	4	14	8	426	3571	2388	517	6946
Ciprofloxacine		1027	30	8	2		89	2129	3324	499	7108
Erythromycine		1027	30	8	375		50	2099	3093	477	7159
Metronidazole		1027	30	3	369		39	2131	3101	477	7177
Cafeine		1027	33	14	368	3	83	2126	3098	499	7251
Sulfamethoxazole		1021	33	3	362	3	200	2161	3188	491	7462
Diméthylamine	940	962	843	765	1164	43	71	1505	7	1218	7518

Illustration 3 : Nombre de données par substance et par année (25 substances les moins recherchées) – Métropole et DROM

Paramètre	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total
Atrazine	8234	8940	8045	8162	7579	6133	7763	7892	7599	4041	74533
Simazine	8208	8924	8004	8142	7573	6163	7743	7895	7584	4037	74418
Diuron	8156	8864	7974	8071	7464	5817	7594	7743	7577	3962	73367
Atrazine déséthyl	8019	8714	7857	7990	7408	5950	7673	7817	7595	4044	73212
Atrazine déisopropyl	7986	8676	7832	7955	7435	6097	7663	7816	7531	3993	73119
Terbuthylazine	8203	8053	7993	8116	7504	6074	7378	7770	7487	4006	72729
Isoproturon	8145	8844	7937	8050	7387	5781	7484	7611	7279	3907	72570
Métolachlore total	8056	8815	7903	8023	7252	5988	7518	7448	7375	3934	72447
Chlortoluron	7780	8508	7636	8095	7427	5716	7529	7665	7356	3973	71830
Bentazone	7378	8340	7360	7977	7468	5843	7391	7333	7539	3967	70741
Métazachlore	7832	7707	7630	7962	7350	5940	7429	7475	7263	3859	70582
Terbuthylazine désethyl	7735	7617	7704	7920	7255	5424	7538	7327	7326	3950	69941
Alachlore	7637	7485	7449	7938	7401	5701	7442	7570	7250	3908	69916
Glyphosate	7601	7629	7640	7850	7299	5533	7429	7313	7453	3914	69797
Oxadixyl	7229	8138	7187	7838	7266	5801	7455	7565	7147	3830	69591
Hexazinone	7285	7220	7201	7875	7364	5927	7490	7696	7386	3918	69507
AMPA	7587	7617	7341	7853	7302	5535	7432	7293	7456	3916	69468
2-hydroxy atrazine	6979	7002	7114	7623	7120	5502	7411	7585	7514	3934	67929
Hexachlorocyclohexane gamma	7601	7641	7625	7811	7159	5485	7240	7085	6028	2626	66436
Linuron	7541	7264	7292	7309	6939	4799	6969	7210	6960	3858	66286
2,4-MCPA	7013	6796	6831	7336	6879	5357	7006	7021	7015	3838	65237
Acétochlore	7017	6676	6680	7073	7360	5303	6893	6978	7214	3904	65233
Tébuconazole	7008	6637	6698	7216	6698	5355	7068	7371	6899	3819	64914
Prochloraz	6743	7439	6641	7150	6730	5391	6872	7052	6774	3804	64741
2,4-D	6864	6676	6710	7240	6771	5333	7018	7023	7024	3816	64620

Illustration 4 : Nombre de données par substance et par année (25 substances les plus recherchées) – Métropole et DROM

3. Code « Remarque Analyse » et champ « Limite de quantification »

La limite de quantification est un paramètre de performance d'une méthode et un des paramètres les plus importants à la fois dans les exigences techniques (cahiers des charges, agrément, devis, offres des laboratoires) mais aussi bien sûr dans la restitution des résultats et donc également dans les bases de données. En particulier c'est une donnée qui impacte fortement les estimations de fréquence de quantification d'une substance (notamment lorsqu'elle évolue au cours du temps).

Le code « remarque analyse » est un code qui permet de préciser la position du résultat fourni par rapport à la limite de quantification du laboratoire. C'est un champ obligatoire pour le transfert de résultats. Ce champ « code remarque » fait l'objet d'une nomenclature SANDRE avec les valeurs suivantes (en gras les principaux codes retrouvés dans la base ADES).

- 0: analyse non faite
- 1 : domaine de validité
- 2 : inférieur au seuil de détection (LD)
- 3 : supérieur au seuil de saturation
- 4 : présence ou absence
- 5 : incomptable
- 6 : Taxons non individualisables
- 7 : Traces < seuil de quantification et > seuil de détection)
- 8 : Dénombrement > résultat
- 9 : Dénombrement < résultat
- 10 : inférieur au seuil de quantification (LQ)

L'Illustration 5 présente par bassin la répartition des données entre les différents codes « Remarque analyse » pour la période 2010-2018 (seuls les codes 1, 2 et 10 sont présentés, les autres codes étant en nombre non significatif). Ces répartitions sont sensiblement identiques en fonction des années (données non présentées).

On note que globalement sur 2010-2018, 5% des résultats d'analyse sur les substances étudiées sont quantifiés (on passe de 4 % environ entre 2010-2014 à 6% entre 2016 et 2018 après la parution de l'arrêté surveillance 2015). Le code 10 est le plus utilisé en cas de « non quantification ». De façon peu attendue, environ 10% des résultats sont rendus avec le code 2 alors que la notion de LD est peu/pas utilisée dans les guides et textes réglementaires nationaux. Il sera nécessaire suite à ce rapport de savoir si l'utilisation de ce code 2 est faite à bon escient ou s'il s'agit d'erreurs de bancarisation. L'utilisation dans la même base et donc potentiellement pour la même substance, de données avec un code 10 (inférieur à la LQ) ou avec un code 2 (inférieur à la LD) n'est pas simple à gérer et peut conduire à éliminer de certains traitements environ 10% des données (par exemple, en cas de code 2 l'information sur la LQ n'est pas obligatoirement disponible). Il existe aussi quelques différences entre bassins avec notamment des utilisations de code 2 plus fréquentes dans certains DROM.

Le code 2 est utilisé en complément du code 10 (des résultats sont non quantifiés et d'autres non détectés). Dans ce cas, il est curieux de ne pas trouver plutôt les codes 1, 7 et 10. L'association du code 2 et du code 10 peut paraître surprenante. Sauf besoin spécifique des gestionnaires, il serait plus simple de recommander voire imposer l'utilisation unique du code

10 pour une exploitation plus facile des bases. Les exploitations dans les bases en seraient largement facilitées.

Gestionnaire	Code 1	Code 2	Code 10
MAR	12	12	76
AG	7	15	78
AP	5	15	80
GUA	4	58	36
GUY	3	20	77
LB	4	11	82
MAY	6	25	69
REU	11	35	54
RM	4	5	91
RMC	3	11	85
SN	7	10	83
Total général	5	11	83

Illustration 5 : Pourcentage des codes remarques par gestionnaire sur la période 2010-2018.

Dans le cas des codes autres que 1, le champ « résultat » est utilisé pour préciser la valeur du seuil considéré que ce soit la LQ dans le cas du code 10, ou la LD pour le code 2. Lorsque le résultat est quantifié, le champ « résultat » ne peut évidemment pas contenir le seuil considéré. Pour ces informations de seuil analytique, il existe deux champs supplémentaires dans les scénarios d'échange et dans la banque ADES : il s'agit des champs « limite de détection » et « limite de quantification ». L'exploitation des données a montré que ces champs et notamment le champ LQ était vide pour 30% des résultats (tout code remarque confondu – période 2010-2018). Par ailleurs il existe de fortes différences de pratiques sur ce point entre gestionnaires (Illustration 6). Un remplissage systématique de ce champ permettrait de disposer des LQ pour tous les résultats et notamment dans le cas de résultats quantifiés et pour les résultats avec le code remarque 2.

Gestionnaire	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
MAR	97	0	84	0	97	100	96	98	45	88
AG	51	51	48	50	62	54	54	63	68	87
AP	0	1	1	1	0	0	1	1	0	0
GUA	71	48	26	0	32	30	53	53	74	88
GUY	0	92	47	91	0	0	0	94	95	nd
LB	86	90	88	88	88	88	88	90	88	91
MAY	0	nd	6	nd	0	nd	0	90	57	30
REU	50	53	54	65	70	69	71	59	83	0
RM	0	0	0	0	0	0	0	0	0	0
RMC	90	89	85	87	83	82	85	89	89	93
SN	87	83	89	88	89	60	93	93	92	0

Illustration 6 : Pourcentage de champ « limite de quantification » rempli (nd : non déterminé).
Résultats 2019 données à titre indicatif (non complets)

4. Incertitude analytique

La directive 2009/90/CE impose aux états membres de vérifier que les méthodes utilisées pour la surveillance permettent d'atteindre une incertitude élargie de 50% (k=2) au niveau de la norme de qualité. Cette exigence a été reprise comme un des critères d'agrément des laboratoires et le « Guide pour la demande de prestation d'échantillonnage et d'analyse physicochimique dans le cadre de la surveillance DCE » publié par le MTES [9] demande que l'incertitude soit restituée avec chaque résultat.

Ce champ est facultatif dans les formats d'échange EDILABO et dans le scénario d'échanges « eaux souterraines ». L'*Illustration 7* présente par année le pourcentage des données pour lesquelles une incertitude est associée. Il montre que ce champ est globalement peu rempli notamment depuis 2014 (les résultats de l'année 2019 sont donnés à titre indicatif ; ils sont très incomplets et peu comparables aux années précédentes en termes de nombre de données). Par ailleurs des différences très importantes de pratiques (allant de 0 à 100% du champ rempli) sont observées entre gestionnaires.

L'incertitude est pour l'instant peu utilisée dans les traitements des données. Il reste que cette information est une métadonnée à associer à un résultat au même titre que par exemple, la limite de quantification, la méthode, le nom du laboratoire, ... Elle peut être utilisée pour conclure sur le caractère significatif ou pas de la différence entre 2 résultats obtenus à deux instants différents, par deux laboratoires, ou encore pour la comparaison d'une valeur à un seuil. Même si cette information est complexe à gérer pour les laboratoires dans des échanges de grands nombres de données, il semble nécessaire de maintenir l'objectif d'un remplissage systématique de ce champ, permettant par exemple de vérifier le respect des exigences de la directive européenne.

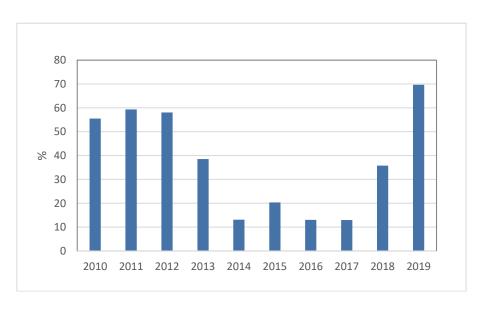


Illustration 7 : Pourcentage de champ « Incertitude » rempli (données métropole et DROM).

Les données d'incertitudes bancarisées (données non présentées) semblent plus homogènes qu'il y a une dizaine d'année notamment du fait des précisions apportées sur la définition de ce champ dans le format EDILABO. Cependant quelques résultats subsistent non exprimés en %.

Des données d'incertitudes par paramètre sont présentées dans l'*Illustration 8*. Elles correspondent aux incertitudes médianes bancarisées. Il s'agit donc d'informations qualitatives car en toute rigueur les incertitudes sont fonction des concentrations retrouvées. Les 25 substances présentant les incertitudes les plus faibles ou les plus fortes sont présentées.

Parmi les valeurs les plus faibles on trouve les métaux dont l'analyse est bien maitrisée en général par les laboratoires mais aussi les dioxines analysées avec des techniques utilisant des principes de dilution isotopique, connus pour fournir des incertitudes faibles.

Étiquettes de lignes	Médiane des	Nombre de
Etiquettes de lighes	incertitudes(% k=2)	données
Chrome	15	7450
1,2,3,4,6,7,8-		
Heptachlorodibenzofurane	15	467
1,2,3,4,6,7,8-Heptachlorodibenzo-p-		
dioxine	15	463
1,2,3,4,7,8,9- Heptachlorodibenzofurane	15	473
Octachlorodibenzofuranne	15	
		411
Plomb	15	7323
Nickel	16	7821
Bore	16	9020
Zinc	16	6656
1,2,3,4,6,7,8,9-Octachlorodibenzo-p- dioxine	17	475
Arsenic		475
	18	7429
Antimoine	19	5299
Cuivre	20	6739
Cyanures libres	20	5794
Diméthylamine	20	3
Cadmium	21	7321
Aluminium	21	5592
Sélénium	21	11601
Cyanures totaux	22	6900
Baryum	22	1852
Mercure	22	5068
2-hydroxy atrazine	24	24051
Chlorates	25	13
Hexachlorocyclohexane gamma	26	22281
Prochloraz	27	24641

Illustration 8 : Médiane des incertitudes par substance (25 incertitudes les plus faibles).

A l'inverse, pour les incertitudes fortes, on trouve des substances sujettes à risque de contamination (NBBS, phtalate, bisphénol, galaxolide,...) et des substances complexes à analyser (metformine) et/ou récemment proposées par les laboratoires (flonicamid, N,N-diméthyl-N'-p-tolylsulphamide), ou pour lesquelles les exigences de limite de quantification sont basses par rapport aux sensibilités analytiques (perfluorés, hormones, ...). La plupart de ces substances sont également inscrites en liste B de l'avis agrément de 2015, indiquant une difficulté analytique ou une nouveauté pour les laboratoires.

Paramètre Paramètre	Médiane des	Nombre de données
Dibromoacétonitrile	incertitudes (%k=2) 50	donnees 1
Flonicamid	50	8890
N,N-Dimethyl-N'-p-	50	0090
tolylsulphamide	50	781
Metformine	48	6612
N-Butylbenzenesulfonamide	48	3844
Galaxolide	47	3685
n-Butyl Phtalate	47	3958
Déméton-O	47	8887
Dichlormide	47	8749
Bisphenol S	46	5237
Daminozide	45	6135
Acide perfluorodecane sulfonique	45	4015
Ethynyl estradiol	44	3685
Perfluorohexanesulfonic acid	43	4013
Piclorame	43	5882
Tolyltriazole	43	6582
Norethindrone	42	5422
Ofloxacine	42	2536
Butyl benzyl phtalate	42	3973
Ciprofloxacine	42	2531
Hydrazide maleique	42	5017
Paracetamol	41	3278
Métobromuron	41	24002
Metconazole	41	17103
Acide perfluoro-n-heptanoïque	41	4014

Illustration 9 : Médiane des incertitudes par substance (25 incertitudes les plus fortes).

5. Accréditation des laboratoires

L'accréditation est exigée par la directive dite « QAQC » [10] pour toutes les méthodes utilisées dans le cadre des programmes de surveillance. Au niveau national, l'arrêté d'agrément des laboratoires [11] a repris cette exigence comme critère d'agrément.

Le scénario EDILABO d'échanges de données « eaux souterraines » comporte un champ « Accréditation ». Ce champ est facultatif. L' *Illustration 10* présente par bassin et par année le pourcentage des données qui ont été acquises sous accréditation, hors accréditation, « inconnu » (formulation SANDRE pour absence d'information) ou pour lesquelles le champ « accréditation » est vide.

Gestionnaire	Non rempli	Inconnu	Accrédité	Non accrédité
MAR	8,3	0,0	51,7	40,0
AG	89,3	0,0	7,1	3,7
AP	99,7	0,0	0,2	0,0
GUA	51,9	0,0	29,4	18,8
GUY	21,3	0,0	55,4	23,3
LB	13,0	0,0	71,4	15,5
MAY	34,6	0,0	46,1	19,3
REU	31,6	0,0	59,8	8,7
RM	100,0	0,0	0,0	0,0
RMC	12,8	1,2	70,2	15,8
SN	45,4	4,5	40,1	10,1

Illustration 10 : Informations relatives au champ « accréditation » (par gestionnaire et en %)

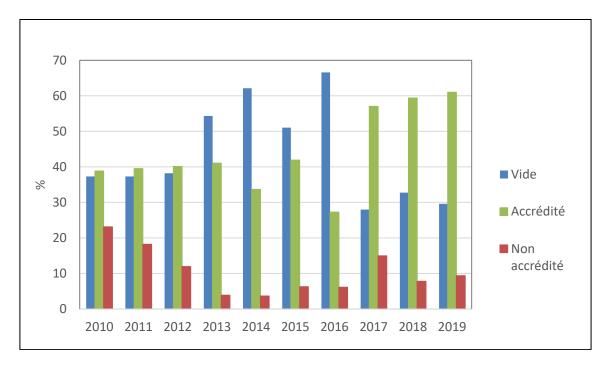


Illustration 11 : Informations relatives au champ « accréditation » (par année et en %) – Métropole et DROM

Le champ « accréditation » est complété de façon inégale entre gestionnaires. De façon globale, le nombre de données identifiées sous accréditation est en augmentation et il est de l'ordre de 60% en 2018/2019, le champ est également de mieux en mieux rempli (70% environ des données sont rendues avec une information relative à l'accréditation).

Il s'agit uniquement d'observation à partir des données bancarisées. Ceci ne reflète pas obligatoirement les conditions réelles d'acquisition des données. Dans ce cas, cela signifierait que les informations disponibles sont biaisées ou partielles (et donc que certains résultats pourraient avoir été acquis sous accréditation mais non identifiés comme tels dans la base).

Il est à noter également que les informations sur l'agrément (champ agrément dans EDILABO) sont absentes de la base de données.

6. Méthode d'analyse

Le champ « méthode d'analyse » est un champ obligatoire dans le scénario d'échanges « eaux souterraines ». Les méthodes d'analyse sont codées par le SANDRE. Parmi les champs méthodes, il existe quelques champs génériques qui n'apportent aucune information sur la méthode utilisée.

Il s'agit des champs suivants :

- 0 : Méthode inconnue
- 2 : Méthode non fixée
- 3 : Méthode spécifique
- 386 : Multi-extraction Multi-détection

L'Illustration 12 recense le pourcentage de données bancarisées avec les codes 0, 3 et 386 (aucune donnée avec le code 2). Le nombre de données faisant référence à ces codes n'apportant aucune information est en diminution. Cependant il reste en 2018 environ 30% des données dans ce cas (contre 60% en 2010). Les méthodes d'analyse déclarées en 2017-2019 sont à une très large majorité les méthodes de LC MSMS (environ 50% de toutes les méthodes déclarées) et les méthodes de GC MSMS (environ 15%). Il est à noter qu'Aquaref a proposé récemment au SANDRE une nouvelle série de codes méthodes permettant de coder toutes les méthodes d'analyses de micropolluants organiques. Ces nouveaux codes sont basés sur un triplet mentionnant la méthode d'extraction, la méthode de séparation et la méthode de détection. La mise en place de ces codes permettra de gagner en précision sur les méthodes utilisées.

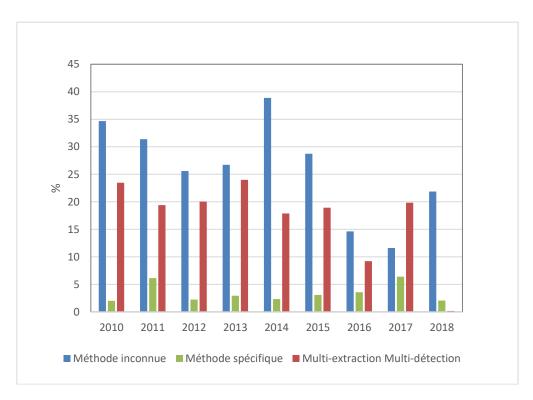


Illustration 12 : Répartition par année des codes méthodes non « informatifs »

7. Code fraction

La fraction est la partie du support considéré (« eau ») qui est soumise à l'analyse. Dans la banque ADES et de façon générale pour l'eau, les 3 fractions les plus utilisées sont les suivantes :

- 3: filtration, centrifugation
- 22 : fraction inconnue de l'eau
- 23 : eau brute

Pour les substances organiques, les analyses doivent être réalisées sur échantillon non filtré (23) et il n'y a pas eu de changement sur ce point dans les dernières années. Concernant les métaux, l'arrêté surveillance de 2015 a précisé les exigences, à savoir que les analyses devaient se faire sur la fraction dissoute. L'étude s'est donc focalisée sur les pratiques concernant les métaux. Dans les années précédentes, des données métaux étaient acquises et bancarisées de façon non harmonisée, soit sur la fraction dissoute, soit sur de l'eau brute. L'*Illustration 13* présente, par année, les fractions déclarées pour la famille des métaux.

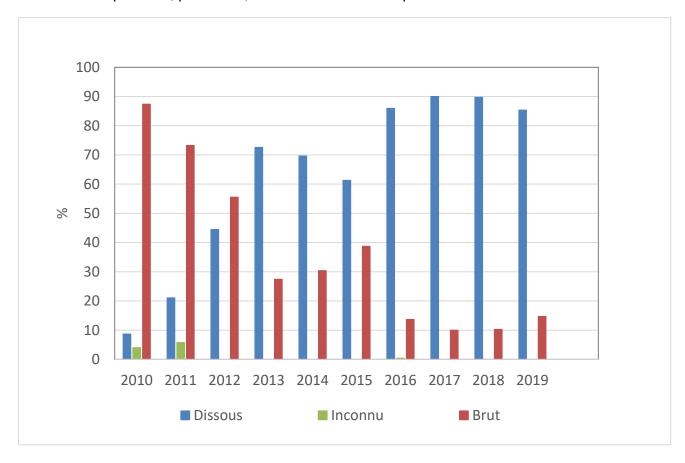


Illustration 13 : Répartition par année des codes fractions pour les métaux (dissous : code 3 ; inconnu : code 22 ; eau brute : code 23)

Du strict point de vue réglementaire, depuis l'arrêté surveillance de 2015, le code à utiliser pour les métaux est donc le code 3 (dissous). Pour les années 2017, 2018, la répartition des codes entre les gestionnaires est présentée dans l'*Illustration 14*. On observe une large proportion de résultats obtenus sur dissous (à une exception près, entre 66 et 95% en fonction des gestionnaires et de façon globale 90% des données sur les années 2017-2018). En

métropole les pourcentages de code 23 sont aux alentours de 10% avec un maximum pour RMC (18%). Dans les DOM les situations sont plus contrastées avec 100% de résultats code 23 en GUA et 34 et 24% respectivement à MAY et GUY. La remarque faite concernant l'accréditation demeure, à savoir que ces constatations peuvent renvoyer soit à de mauvaises pratiques analytiques, soit à des erreurs de bancarisation ou d'identification par les laboratoires. Il sera donc nécessaire de comprendre l'utilisation du code 23. Il peut aussi dans certains cas correspondre à des demandes spécifiques, hors application stricte de l'arrêté, en complément de l'utilisation du code 3.

Gestionnaire	Code 3	Code 23	
AG		93	7
AP		89	11
LB		89	11
RM		93	7
RMC		82	18
SN		91	9
GUA		0	100
GUY		95	5
REU		76	24
MAY		66	34

Illustration 14 : Répartition par gestionnaire pour les années 2017-2018 des codes fractions 3 et 23 pour les métaux

8. Limites de quantification (conformité aux exigences de la directive QAQC)

Les limites de quantification ont été comparées aux exigences de l'arrêté agrément [11] et de l'avis associé [12]. Ces exigences ont été fixées en cohérence avec les exigences européennes de la directive 2009/90/CE [5] sur l'assurance et le contrôle qualité pour la Directive Cadre Eau. Cette directive impose que les laboratoires utilisent des méthodes permettant d'assurer une limite de quantification inférieure ou égale au tiers de la Norme de Qualité (NQ) ou de la valeur seuil (VS). Dans le cadre des eaux souterraines, des Normes de Qualité n'existent que pour :

- les produits phytosanitaires, biocides et leurs métabolites pertinents (NQ=0.1μg/l sauf pour aldrine, dieldrine, hetpachlore et heptachlore epoxyde pour lesquels la NQ est de 0.03 μg/l).
- les nitrates (non traités dans ce rapport).

Quelques autres paramètres ont des valeurs seuils établies au niveau national dans les eaux souterraines. Par exemple :

As : valeur seuil : 10 μg/l
Cd : valeur seuil : 5 μg/l
Pb : valeur seuil : 10 μg/l
Hg : valeur seuil : 1 μg/l

Trichloréthylène : valeur seuil : 10 µg/l
Tétrachloréthylène : valeur seuil : 10 µg/l

Les limites de quantification de l'avis agrément ont été fixées en respectant, au minimum et dans la mesure des capacités analytiques des laboratoires, l'exigence d'être inférieures au tiers de ces valeurs seuils. Pour les autres paramètres, ces limites de quantification ont été fixées en lien avec des exigences sur les eaux de surface et/ou en fonction des capacités analytiques des laboratoires. En 2015 seule une partie des substances de l'avis disposait d'une LQ (substances dites « Liste A » pour lesquelles les capacités des laboratoires étaient déjà satisfaisantes au regard des objectifs de LQ). Seules ces substances pour lesquelles il existait une exigence pour l'agrément dès 2015 sont considérées dans la suite de ce paragraphe (197 substances parmi les 225 substances de l'arrêté surveillance). Pour les autres substances et pour certaines substances de cette liste A, des exigences de performance parfois fortes (LQ faibles) ont été fixées pour fin 2018. L'atteinte de ces exigences n'est pas abordée dans ce rapport compte tenu des données disponibles.

L'exploitation qui suit utilise la LQ de l'avis agrément 2015 pour les substances « Liste A » comme référence afin de vérifier la part des données qui respecte ces exigences. Il s'agit également de mettre en évidence les substances pour lesquelles des difficultés analytiques existent pour atteindre ces exigences.

Dans la base ADES, les limites de quantification sont disponibles dans le champ « Résultat » lorsque le résultat n'est pas quantifié et donc quand le code remarque est 10. En cas de résultat quantifié, la limite de quantification peut être disponible dans le champ dédié « Limite de quantification ». Cependant (cf §3) ce champ n'est rempli que de façon incomplète (30% de champs vides) et de façon hétérogène entre gestionnaires. Un remplissage systématique de ce champ permettrait de disposer de l'information sur la limite de quantification quel que soit le résultat et de façon harmonisée et facilement exploitable. Dans l'exploitation qui suit

seules les LQ des résultats code 10 ont été exploitées. Pour chaque donnée, c'est le rapport R entre la LQ déclarée et la LQ de l'avis agrément 2015 qui a été calculé. Par année, le pourcentage de résultat avec un rapport inférieur ou égal à 1 représente le pourcentage de résultat conforme à l'exigence de l'agrément.

La répartition du nombre de substances en fonction du pourcentage de données conformes sur les années 2016-2018 est présentée dans l'*Illustration 15*. Pour plus de facilité de lecture, 4 classes ont été définies (moins de 25% de données conformes,25%-50%, 50%-75% et >75%). Pour 166 substances sur les 197 étudiées de la « Liste A » (84%), plus de 75% des données sont conformes. Il faut également noter que pour 122 de ces substances (62%), plus de 95% des données sont conformes. A l'inverse il y a 8 substances pour lesquelles moins de 50% des données sont conformes.

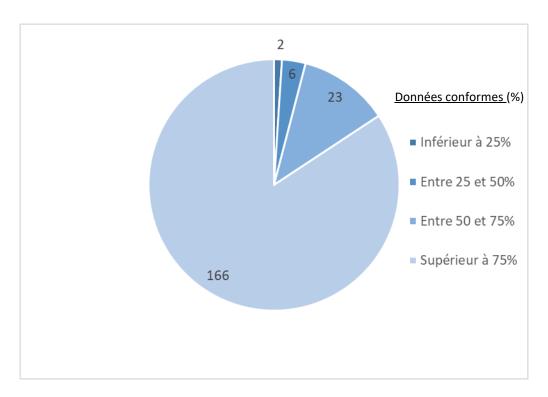


Illustration 15 : Nombre de substances en fonction du pourcentage de données pour lesquelles la LQ est conforme à l'avis agrément 2015 (pour les années 2016-2018).

L'*Illustration 16* présente les résultats pour les 31 substances pour lesquelles les exigences de LQ sont le moins bien respectées (moyenne des pourcentages conformes sur les années 2016-2018 inférieure à 75%).

La situation est surprenante pour le trichloroéthane 1,1,1 car il existe 11 laboratoires agréés dont 5 sur les eaux douces alors qu'on ne retrouve que 2% des résultats conformes aux exigences. Aucune explication n'a pu être trouvée pour cette situation.

Pour certaines substances on observe des performances meilleures dans les années 2011, 2012, 2013 (ex : Ciprofloxacine, Carbamazepine epoxide, Ofloxacine, 2-Hydroxy Ibuprofen, metronidazole, erythromicine, ...) par rapport aux années plus récentes. Cette situation est également surprenante. Il pourrait s'agir « d'estimations optimistes » des limites de quantification durant ces années. Il faut noter que les années 2011-2013 sont des années

durant lesquelles ont eu lieu les campagnes exceptionnelles de recherche de substances émergentes en métropole (2011) et dans les DOM (2012-2013). Pour ces campagnes il est possible que certaines limites de quantification aient été estimées suivant des protocoles différents des protocoles exigés dans le cadre de l'agrément et donc de ceux majoritairement appliqués dans la surveillance actuelle.

Paramètre	2010	2011	2012	2013	2014	201	5 2016	2017	2018	Moyenne (2016- 2018)
Trichloroéthane-1,1,1	2	2	1	4	0	0	0	0	2	1
Ciprofloxacine		100	0	75	100		0	0	32	11
Daminozide			0	0	0	0	0	16	54	23
Baryum	43	69			100		3	48	11	21
Bromure		0		0	100		51	72	15	46
Carbamazepine epoxide		100	0	0	0	0	0	21	83	35
Ofloxacine		100	100	100	100		22	50	46	39
2-Hydroxy Ibuprofen			100	100	97		0	25	64	30
Hexachlorocyclohexane gamma	0	0	0	0	0	0	36	43	91	57
Hexachlorocyclohexane delta	0	0	0	0	0	0	36	43	87	56
Hexachlorocyclohexane bêta	0	0	0	0	0	0	41	47	88	59
Dieldrine	0	0	0	0	0	13	43	47	88	59
Endosulfan bêta	0	0	45	43	51	13	46	50	84	60
Bisphenol A		0	0	0	1	2	58	47	82	62
4-nonylphenols ramifiés	71	76	76	80	66	100	76	53	65	65
Endosulfan alpha	0	0	49	47	54	15	48	52	88	63
1,2,3,4,7,8,9-Heptachlorodibenzofurane		100			0		0	25	100	42
Aminotriazole	0	15	59	62	54	31	58	59	89	69
1,2,3,4,6,7,8-Heptachlorodibenzofurane		100			0		0	25	100	42

Paramètre	2010	2011	2012	2013	2014	2015	2016	2017	2018	Moyenne (2016- 2018)
Erythromycine		100	0	75	100		0	42	86	43
Zinc	45	39	30	45	62	42	70	70	63	68
Metronidazole		100	100	100	100		53	43	86	61
Fosthiazate	100	100	81	100	100	100	61	60	88	70
1,2,3,4,6,7,8-Heptachlorodibenzo-p- dioxine		100			0		0	26	100	42
Indéno(1,2,3-cd)pyrène	0	0	21	13	30	20	65	57	100	74
Cuivre	24	33	46	67	62	30	51	76	80	69
Acide perfluoro-octanoïque		100	100	100	100	95	65	68	82	71
Bore	93	99	100	98	96	92	71	73	79	74
Diclofenac		100	100	93	100	100	53	73	77	68
Di(2-ethylhexyl)phtalate	0	13	22	34	38	50	65	86	71	74
Piclorame	34	0	94	91	75	91	78	59	89	76

Illustration 16 : Pourcentage de données pour lesquelles les LQ sont conformes à l'avis agrément 2015 (cf texte pour le choix des substances).

Pour le baryum et le bromure, il s'agit d'artefacts liés au fait que ces paramètres sont fréquemment quantifiés et qu'il est difficile d'évaluer facilement les limites de quantification dans ce cas. Ces données n'étant pas comptabilisées, les pourcentages de LQ conformes sont sous estimées. Il n'existe aucune problématique analytique pour ces paramètres.

Pour les substances HCH, bisphénol A, dieldrine, on note une amélioration progressive et sensible des performances à partir de 2016, grâce aux évolutions des techniques et aux exigences fixées dans l'avis agrément 2015.

Pour les autres substances les taux de conformité en 2018 sont voisins ou supérieurs à 80%.

De façon globale, un pourcentage important des données est conforme aux exigences de l'agrément en termes de limite de quantification (environ 95% en 2018). On note, de façon « naturelle » une amélioration progressive des performances des laboratoires en partie poussée par les nouvelles exigences fixées en 2015 (*Illustration 17*).

Illustration 17 : Pourcentage de données conformes aux exigences de performances (LQ) de l'avis agrément 2015

Les substances suivantes sont les principales substances pour lesquelles à l'heure actuelle on peut considérer les taux de données conformes comme insuffisants (moins de 75% en 2018) :

- Trichloroéthane-1,1,1
- Ciprofloxacine
- Ofloxacine
- Daminozide
- 2-Hydroxy Ibuprofen
- 4-nonylphenols ramifiés
- Di(2-ethylhexyl)phtalate

Pour ces 7 substances il n'y a que pour le daminozide qu'il existe formellement une exigence de norme de qualité européenne (0.1 μ g/l en tant que substance assimilée « pesticide » ; la LQ de l'avis agrément est fixée au maximum possible à savoir 0.03 μ g/l). Ces 7 substances étaient également classées dans la liste A de l'avis agrément 2015. Il avait été considéré à l'époque que les LQ pouvaient être atteintes assez rapidement par les laboratoires. Il s'avère que 3 ans après (2018) il reste encore des efforts analytiques à fournir pour ces substances.

Pour la liste des substances de l'illustration 16, les informations concernant l'écart entre la LQ et la LQ exigée ont été recherchées. L'*Illustration 18* présente pour cette liste de substances, la médiane des rapports R entre la LQ et la LQ de l'avis agrément par gestionnaire et pour l'année la plus récente et complète (2018). Pour une plus grande facilité de lecture, les rapports supérieurs à 3 (valeur arbitraire) sont surlignées.

Ces données représentent « l'effort » analytique à fournir pour atteindre les exigences de l'agrément. Pour les 3 premières substances (Trichloroéthane-1,1,1, Ciprofloxacine, Daminozide) la situation est voisine chez beaucoup de gestionnaires avec un objectif de gain de sensibilité d'un facteur 5 à 10 environ (voire plus dans certains cas pour daminozide). Pour les autres substances, les situations sont plus contrastées avec au minimum un cas pour lequel la situation est « conforme » (R≤1). On peut relever les quelques cas suivants (en plus des cas cités précédemment) pour lesquels certaines données sont très éloignées des LQ agrément et/ou les données entre gestionnaires sont très variables :

- Carbamazepine epoxide
- 2-Hydroxy Ibuprofen
- Erythromycine
- Cuivre
- Acide perfluoro-octanoïque

Les limites de quantification de l'avis agrément ont été fixées en 2015 en tenant compte des capacités des laboratoires. Pour certains paramètres (notamment pesticides) les LQ fixées ne respectent pas strictement les exigences européennes (LQ inférieure à NQ/3 c'est-à-dire 0.03 µg/l). Une exploitation spécifique a été réalisée sur les pesticides de l'arrêté surveillance en vérifiant que leur LQ était inférieure à 0.03 µg/l (et pas seulement aux LQ de l'avis). Les pourcentages de résultats (avec code remarque 10) pour lesquels cette condition est respectée ont été calculés par année et par substance. L'*Illustration 19* présente ces données pour les substances pour lesquelles la moyenne de ces pourcentages sur les années 2016-2018 est inférieure à 75%.

Pour le triclosan, le dichloropropène-1,3 et l'hydrazide maléique, aucune LQ ne respecte l'exigence européenne en 2018. Cependant pour le triclosan et le dichloropropène, les LQ sont proches de la valeur de 0.03 µg/l en 2018 (entre 0.05 et 0.1µg/l). Pour l'hydrazide maléique, les LQ sont plus éloignées et un facteur de l'ordre de 10 est à gagner. Pour cette dernière substance, Aquaref a publié en 2018 une fiche méthode dont l'application permet d'atteindre une LQ de 0.03 µg/l.

A un degré moindre, des difficultés existent aussi pour fosetyl, daminozide et N,N-Dimethyl-N'-p-tolylsulphamide, même si des progrès récents sont visibles et que les LQ cibles devraient être atteintes rapidement.

Paramètre	AG	AP	GUA	GUY	LB	MAR	MAY	REU	RM	RMC	SN
Trichloroéthane-1,1,1	10,0	10,0			1,0			3,2	4,7	1,0	6,1
Ciprofloxacine		4,0			4,0			4,9	1,0	4,0	9,8
Daminozide		1,0			1,0			33,3	33,3	1,0	33,2
Baryum	2,0				0,02		0,4		0,02	2	0,02
Bromure	0,4				2,0				0,2	2,0	0,2
Carbamazepine epoxide	100,0	0,02		1,0	1,0		4,0	1,6	1,0	1,0	2,4
Ofloxacine	5,0	2,0		2,0	2,0		2,0	1,0	1,0	2,0	1,0
2-Hydroxy Ibuprofen		0,5			0,5			2,8	1,0	10,0	5,1
Hexachlorocyclohexane gamma	2,5	0,1			0,5	4,8		0,5	0,	0,5	0,5
Hexachlorocyclohexane delta	1,0	0,1			2,5	4,8		0,5	0,	0,5	0,5
Hexachlorocyclohexane bêta	1,0	0,1			2,5	4,1		0,5	0,	0,5	0,5
Dieldrine	1,0	0,1			2,5	5,0		0,5	0,	0,5	0,5
Endosulfan bêta	4,0	0,04		2,0	2,0			0,4	0,4	0,4	0,4
Bisphenol A	1,0	0,4	1,0	4,0	1,0	1,0	0,4	0,4	0,4	0,4	0,5
4-nonylphenols ramifiés	1,0	0,3	3,0	1,0	1,0	0,4		0,2	0,2	2 1,0	0,2
Endosulfan alpha	0,8	0,0		2,0	2,0			0,4	0,4	0,4	0,4
1,2,3,4,7,8,9-Heptachlorodibenzofurane		1,0									1,0
Aminotriazole	1,7	0,7		1,7	1,7		1,7	0,7	0,	7 1,0	0,7
1,2,3,4,6,7,8-Heptachlorodibenzofurane		1,0									1,0
Erythromycine		1,0			1,0			41,4	1,0	1,0	92,8
Zinc	2,0			5,0	0,5		1,0	0,4	0,4	0,5	0,5
Metronidazole		1,0		1,0	1,0			1,2	1,0	1,0	1,5
Fosthiazate		0,7			0,2			1,8	1,0	0,7	1,7
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxine		1,0									1,0
Indéno(1,2,3-cd)pyrène	0,6	0,5			0,6			0,6	0,6	0,5	0,6
Cuivre	2,0	0,2		20,0	0,3		0,4	0,3	0,3	0,2	0,3
Acide perfluoro-octanoïque	10,0	0,1		0,1	0,1	10,0		0,3			0,2
Bore	0,5				0,0				0,02	2 0,5	0,02
Diclofenac	2,0	2,0	2,0	2,0	1,0		1,0	1,0			1,0
Di(2-ethylhexyl)phtalate	0,6	0,5			1,0	2,5		0,5	0,	5 1,0	0,5
Piclorame		0,6		2,0	1,0			0,1	0,	0,6	0,1

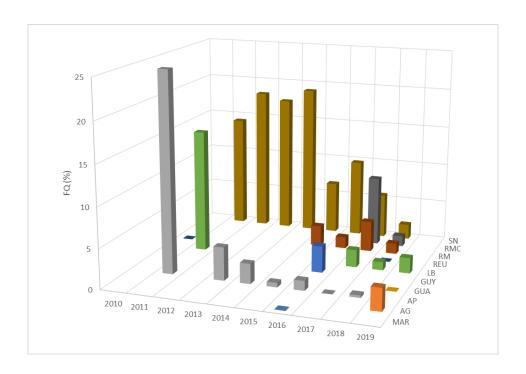
Illustration 18 : Médiane des rapports LQ/LQ_{avis} par substance et par gestionnaire (cf texte pour la liste des substances)

Paramètre	LQ avis agrément (µg/l)	2010	2011	2012	2013	2014	2015	2016	2017	2018
Triclosan	0,05/so	100	4	0	0			0	0	0
Dichloropropène-1,3	0,05/so	0	0	0	0	0	0	0	0	0
Hydrazide maleique	so/0.03.		0	0	0	0	95	29	24	0
Fosetyl	so/0.03		100			0		0	14	45
Daminozide	0,03			0	0	0	0	0	17	53
N,N-Dimethyl-N'-p- tolylsulphamide	so/0.03			100	100	0	0	9	23	100
Aminotriazole	0,03	0	14	54	57	49	26	51	52	76
Atrazine déisopropyl déséthyl	0,05/0.03	52	58	61	48	52	45	57	60	87
Dicamba	0,03	85	92	83	87	74	60	67	76	69
Fosthiazate	0,03	97	98	98	98	98	97	62	64	88
Piclorame	0,05/0.03	34	9	92	89	74	81	75	57	85
Pentachlorophénol	0,1/0.03	85	93	62	69	48	51	63	81	77

Illustration 19 : Pourcentage de données respectant une LQ inférieure à 0.03 μg/l pour quelques pesticides (liste : cf texte)- Les LQ de l'avis agrément 2015 sont rappelées (LQ 2015 et la LQ visée à fin 2018 – so=sans objet)

9. Etude spécifique de quelques substances

Dans le cadre de cette étude de données de la base ADES, il a été proposé de regarder plus spécifiquement les données de quelques substances pour lesquelles des difficultés analytiques ou d'échantillonnage ont été identifiées ou suspectées, l'objectif étant d'étudier la possibilité d'identifier des données incertaines ou douteuses, à travers l'exploitation de données à une large échelle. Deux types d'exploitation ont été réalisées : l'une concerne les fréquences de quantification par gestionnaire et par année, l'autre, la mise à disposition d'informations sur les médianes, percentiles 90 et 95 à destination des gestionnaires à des fins d'utilisation pour le contrôle automatique des données reçues.


9.1. ETUDE DE FREQUENCES DE QUANTIFICATION

Afin d'avoir une vision des éventuelles sur ou sous-estimation de données, les fréquences de quantification (FQ) par gestionnaire et par année sur la période 2010-2018 ont été calculées. L'hypothèse faite est que les biais analytiques ou d'échantillonnage impactent de façon significative ces FQ entre gestionnaire ou en fonction de l'année (en lien avec les prestataires choisis). Cependant, de nombreux facteurs autres que les facteurs « analytiques » peuvent entrer en ligne de compte pour expliquer des variations de FQ (pressions, conditions hydrologiques, données de campagnes exceptionnelles, ...). Les conclusions ne pourront donc être que des pistes d'explication et non des conclusions définitives quant à la fiabilité des résultats.

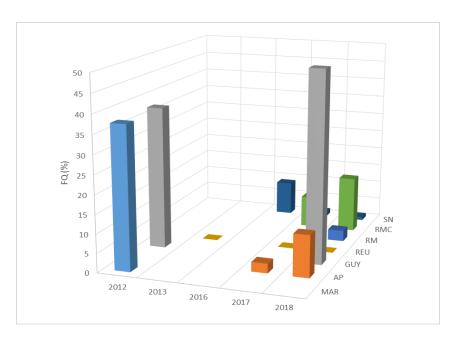
Afin d'éviter les biais liés aux variations de limites de quantification, les fréquences de quantification ont été déterminées par rapport à une limite de quantification virtuelle unique [13] choisie comme un compromis entre :

- un nombre suffisant de données quantifiées (LQ pas trop haute)
- un nombre suffisant de données (LQ pas trop basse car les données avec une LQ supérieure à la LQ virtuelle sont supprimées).

Par ailleurs, lorsque pour un couple gestionnaire/année, un jeu de limite de quantification dépassait la limite de quantification virtuelle choisie, les données relatives à ce couple ont été éliminées. Cette sélection est très « conservatrice » mais elle évite de biaiser la fréquence de quantification par une sélection « arbitraire » des données. Elle a malheureusement comme conséquence de limiter fortement les couples gestionnaire/année pour lesquels les fréquences de quantification peuvent être calculées. L'Illustration 20 présente les résultats pour le paramètre di(2-ethylhexyl) phtalate (DEHP code SANDRE 6616), substance prioritaire et plastifiant sujet à risque de contamination.

Nombre de donnés	2010	2011	2012	2013	2014	2015	2016	2017	2018
MAR							57		
AP		60		337	358	360	324	117	643
GUA									
GUY							30		
LB		272						682	665
REU	1								64
RM						690	815	851	449
RMC								1914	747
SN		28	1015	1680	1722	395	2054	1993	1780

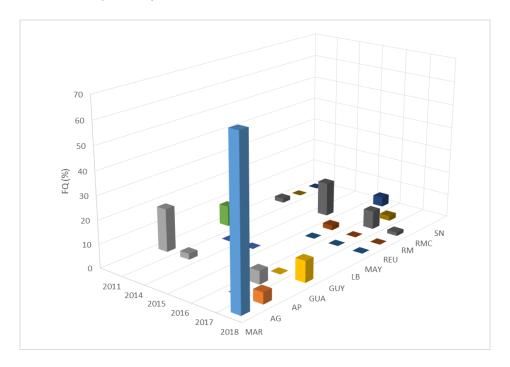
Illustration 20 : Fréquences de quantification pour le DEHP (code 6616) et nombre de données considérées - Limite de quantification utilisée : 0,4 µg/l


Sur cet exemple, on peut noter de façon très qualitative des fréquences de quantification plus élevées pour l'année 2011 (année de la campagne exceptionnelle en métropole) et pour le bassin SN jusqu'à 2014. Elles peuvent s'interpréter par une maitrise insuffisante à l'époque des risques de contamination liés au DEHP (plastifiant) mais aussi par des jeux de stations différents ou encore dans le cas de SN par une diminution des pressions (peu probable cependant compte tenu de l'écart important entre 2014 et 2015). Un exemple d'exploitation spécifique sur ce cas du DEHP a été faite en réduisant le jeu de données à un jeu de stations fixes (300) pour lesquelles des résultats étaient disponibles pour toutes les années considérées (Illustration 21). On note toujours un décrochage dans les FQ pour SN mais qui se situe entre 2015 et 2016 (dans cet exemple l'impact de la variation du jeu de donnée et donc du type de stations est significatif car les ruptures de FQ ne sont pas observées pour les mêmes années).

Gestionnaire/FQ (%)	2012	2013	2014	2015	2016	2017	2018
RM				2,28	1,7	3,95	1,04
RMC						8	2,26
SN	11,1	13	12,2	13,6	2,9	4,69	0

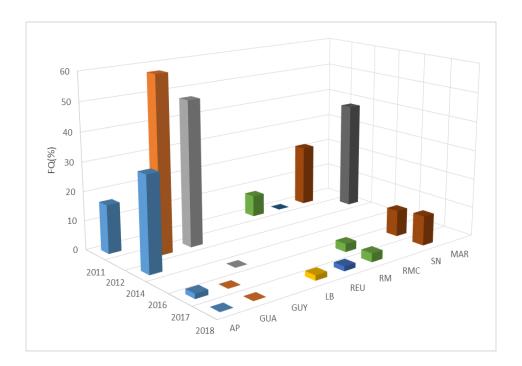
Illustration 21 : Fréquences de quantification pour le DEHP (code 6616) pour un jeu de stations limité (cf texte) - Limite de quantification utilisée : 0,4 μg/l

Les mêmes traitements ont été réalisés pour quelques autres substances (Illustrations. 22 à 25). Les éléments suivants peuvent être relevés (potentiellement liés à des biais analytiques ou d'échantillonnage) :


 N butyl phtalate (substance à risque de contamination): les fréquences de quantification sont fortes pour MAR et GUY mais pour un faible nombre de données. On observe une diminution significative de la fréquence de quantification pour SN entre 2016 et 2017 pour un jeu de données et de station très voisins. L'augmentation de la fréquence de quantification en 2018 pour AP est également surprenante (à un degré moindre pour RMC).

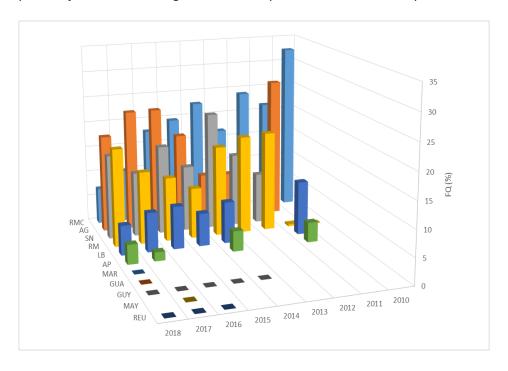
Nombre de données	2012	2013	2016	2017	2018
MAR	8				
AP				118	649
GUY	8				8
REU		2		43	63
RM					449
RMC				1920	742
SN			2058	1994	1784

Illustration 22 : Fréquences de quantification pour le N butyl phtalate (code 1462) et nombre de données - Limite de quantification utilisée : 0,1 µg/l


 Bisphénol A: la fréquence de quantification est très forte en MAR 2018 (mais le nombre de données est faible); la fréquence de quantification est divisée par 2 pour RM entre 2015 et 2017 pour un jeu de données et de station très voisins.

Nombre de données	2011	2014	2015	2016	2017	2018
MAR						58
AG					5	208
AP	60	358			107	
GUA					6	22
GUY		25	26			
LB	275					
MAY				14	13	14
REU				49	60	64
RM	53		910		911	329
RMC	1				740	
SN	28			968		

Illustration 23 : Fréquences de quantification pour le Bisphénol A (code 2766) et nombre de données - Limite de quantification utilisée : 0,1 µg/l


 Caféine: les fréquences de quantification sont globalement fortes notamment en DOM avant 2015 mais pour un faible nombre de données. Elles sont plus faibles après 2016 tous bassins confondus (associé à un nombre de données plus important).

Nombre de données	2011	2012	2014	2016	2017	2018
AP	60		358		118	
GUA		8			22	21
GUY		8		30		
LB						455
REU						62
RM	53				356	435
RMC	1					
SN	28				945	728
MAR		8				

Illustration 24 : Fréquences de quantification pour la caféine (code 6519) et nombre de données - Limite de quantification utilisée : 0,1 µg/l

Deséthyl déisopropyl atrazine (substance non sujette à risque de contamination à l'inverse de toutes les substances précédemment étudiées mais pour laquelle il peut y avoir des difficultés analytiques de sur ou sous-estimation – par ailleurs, à la différence des autres substances qui peuvent être considérées comme ubiquistes, cette substance est un métabolite de l'atrazine donc sa détection est en lien avec d'anciennes pressions pour ce pesticide): par agence ou office de l'eau les fréquences de quantification varient sans qu'il y ait globalement des effets très significatifs. La principale observation concerne les résultats RM sur les années 2010 et 2011 qui sont particulièrement faibles pour un jeu de données significatif et comparable avec les années postérieures.

Gestionnaire/FQ (%)	2010	2011	2012	2013	2014	2015	2016	2017	2018
MAR									0
AG		26,9		8,9	9,1	17,6	23,1	23,1	18,6
AP		3,8			3,9			1,7	3,7
GUA									0
GUY					0	0	0	0	0
LB		10,3			7,9	6,2	8,1	7,5	5,6
MAY								0	
REU							0	0	0
RM	0	0,4	19,2	18,8	17,3	9,7	12,2	13,8	18,7
RMC	32,5	21,4	24	16,7	22,7	19,7	17,8	10,2	6,9
SN			9,7	14	22,5	12,6	17	12,3	16,2

Illustration 25 : Fréquences de quantification pour la deséthyl déisopropyl atrazine (code 1830) -Limite de quantification utilisée : 0,1 μg/l (pour cette substance les données dont fournies en tableau et en graphe pour une meilleure lisibilité)

Nombre de données	2010	2011	2012	2013	2014	2015	2016	2017	2018
MAR									70
AG		156		246	241	244	255	221	236
AP		52			358			118	646
GUA									22
GUY					25	26	30	32	34
LB		271			922	909	869	785	777
MAY								13	
REU							59	60	64
RM	941	1013	1022	872	1071	640	875	911	439
RMC	1187	1178	1174	1580	1147	1139	1371	1845	1841
SN			1436	1657	1695	397	2058	2049	1832

Illustration 26 : Nombre de données pour la deséthyl déisopropyl atrazine (code 1830) - Limite de quantification utilisée : 0,1 μg/l

Ces traitements de données permettent de visualiser les fréquences de quantification dans le temps et en fonction du bassin et donc de les comparer et les discuter en intégrant le facteur « analytique » comme source d'interprétation : les fréquences de quantification les plus élevées indiquant globalement des pressions plus fortes ou des jeux de stations à pressions plus fortes ou encore des anomalies analytiques notamment dans le cas de substances à risques de contamination. Cependant ces exploitations ne permettent pas de déceler les éventuelles anomalies d'analyse ou d'échantillonnage de façon sure. Elles pointent d'éventuelles anomalies qui peuvent nécessiter une étude plus spécifique par les gestionnaires, incluant le facteur analytique.

9.2. STATISTIQUES SUR LES DONNEES DE SURVEILLANCE

L'exploitation du paragraphe précédent est une évaluation très globale sur l'ensemble d'un bassin au cours d'une même période. Elle ne permet pas de fournir des critères d'appréciation pour un résultat donné. Afin de fournir des critères utilisables pour chaque résultat, les données compilées de moyenne, médiane, percentile 90, 95 et valeurs maximales sont présentées (pour les résultats quantifiés) dans l'annexe 2.

Ces données pourront servir aux gestionnaires à formaliser des critères d'alerte pour chaque résultat afin le cas échéant de déclencher des contrôles analytiques par le laboratoire prestataire. Si elles ne permettent pas d'identifier des fortes sous-estimations de résultats, ou bien des sur ou sous-estimations systématiques mais de faible intensité, elles devraient éviter les nombreuses anomalies visibles dans le tableau dans la colonne C_{max} : valeurs aberrantes certainement liées en partie à des erreurs d'unité.

Si l'on prend l'exemple du DEHP (code 6616), les percentiles 90 et 95 sont de 1.3 et $2 \mu g/l$. En fonction de l'intensité des contrôles que l'on souhaite mettre en place, on pourra choisir l'une de ces 2 valeurs comme seuil de déclenchement de contrôles de la chaine de mesure. Dans le cas de substances sujettes à risque de contamination (phtalates, bisphénol A, caféine, diclofénac, parabènes, ...) le percentile 90 pourrait être privilégié.

10. Conclusion

Cette étude a permis d'exploiter un jeu important de données de surveillance d'eaux souterraines issues de la base ADES sous l'angle de la qualité de la bancarisation de ces données et des métadonnées associées. Dans le jeu global de données, certaines substances disposent de moins de données de surveillance que d'autres : dioxines, fipronil sulfone, ou encore l'acide acétylsalicylique (une réflexion sur les modalités de surveillance de cette substance semble nécessaire).

L'utilisation de codes « remarque » variés rend une exploitation globale des résultats complexe et fastidieuse. Il s'avère qu'environ 10% des données sont bancarisées avec le code 2 (non détecté) avec des pourcentages allant de 5 à 58% en fonction des bassins. Sauf besoin spécifique des gestionnaires, compte tenu de l'absence de toute référence à la limite de détection dans les textes réglementaires et compte tenu des exigences de limites de quantification déjà basses pour beaucoup de substances, il semble préférable de généraliser l'utilisation du code 10 afin de ne pas biaiser les estimations de fréquence de quantification.

L'information sur l'incertitude sur les résultats est globalement peu disponible mais les incertitudes bancarisées semblent plus homogènes que par le passé. En ce qui concerne l'accréditation, pour les années les plus récentes 2017-2018, seulement 60% des résultats y font référence et l'information sur le caractère accrédité ou pas du résultat est disponible pour 70% des données. Aucune référence à l'agrément n'est disponible.

Les informations sur les méthodes d'analyse se sont améliorées mais il reste encore, en 2018, environ 30% de résultats faisant référence à des codes génériques qui ne renseignent pas sur la méthode (contre 60% en 2010). Il serait nécessaire que les laboratoires et les producteurs des données limitent l'utilisation de ces codes. Concernant les métaux les pratiques de filtration des échantillons se sont largement répandues depuis 2015. Sur les années 2017-2018, 90% des résultats de métaux sont acquis sur la fraction dissoute. Il serait néanmoins utile de comprendre si les 10% analysés sur l'eau brute sont liés à des objectifs spécifiques ou à des erreurs de bancarisation.

Les performances des méthodes utilisées sont globalement conformes aux exigences européennes et/ou nationales. Sur l'ensemble des substances, 95% des données ont une limite de quantification conforme sur l'année 2018. Parmi les substances identifiées « à problème » (limites de quantification trop élevées) on peut citer trichloroéthane-1,1,1, ciprofloxacine, ofloxacine, daminozide, 2-hydroxy-ibuprofène, 4-nonylphénols ramifiés, di(2-éthylhexyl)phtalate. Concernant les pesticides, en 2018, l'exigence européenne n'est pas respectée pour le triclosan, le dichloropropène-1,3 et l'hydrazide maléique. A un degré moindre, des difficultés en termes de limite de quantification existent aussi pour fosétyl, daminozide et N,N-dimethyl-N'-p-tolylsulphamide.

D'autres difficultés d'exploitation des données de la base sont apparues à travers ce travail : par exemple la difficulté à gérer de multiples unités. Sur ce point Aquaref renouvelle sa proposition de supprimer de nombreuses unités telles que $\mu g/l$ As, $\mu g/l$ Pb... pour ne conserver que $\mu g/l$.

Enfin, quelques cas de substances spécifiques (phtalates, bisphénol, caféine...) sujettes à des biais analytiques ou d'échantillonnage ont été étudiés afin de voir si les données

disponibles permettaient d'identifier ces biais. L'exploitation des fréquences de quantification (calculées par rapport à une limite de quantification unique) en fonction des années et des bassins, montre certaines évolutions suspectes sans qu'il soit malheureusement possible de conclure formellement. Ces exploitations permettent cependant de mettre en lumière ces données suspectes et le cas échéant d'étudier plus en détail les interprétations possibles. Il est aussi fourni aux gestionnaires des statistiques sur les données de surveillance (ex : percentile 95, médiane) pour chaque substance afin qu'ils puissent disposer de critères permettant par exemple de déclencher des vérifications auprès des laboratoires, évitant ainsi la bancarisation de résultats aberrants.

Cette étude a montré en moyenne une bonne qualité des informations disponibles sur les données de surveillance d'eau souterraine de la base ADES (par exemple concernant les limites de quantification des méthodes). Des évolutions positives ont également été notées ces dernières années (amélioration de la précision sur les méthodes, utilisation généralisée de la fraction dissoute pour l'analyse des métaux). Il reste cependant que pour disposer de données plus facilement exploitables, interprétables, des efforts doivent encore être faits sur l'utilisation des codes remarque, sur les informations sur les méthodes utilisées, ... Pour certaines substances des améliorations de méthodes sont nécessaires pour atteindre les limites de quantification requises au niveau national ou européen. Dans le cadre de ses actions d'appui aux gestionnaires et d'appui à la cellule SANDRE de l'Office International de l'Eau, Aquaref fera des propositions sur ces différents sujets.

Il est rappelé que cette étude ne concernait pas la qualité métrologique des données.

11. Bibliographie

- [1] Arrêté du 7 août 2015 modifiant l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement [2] 2018
- [2] Arrêté du 17 octobre 2018 modifiant l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement
- [3] Directive 2000/60/CE du parlement européen et du conseil du 23 octobre 2000 établissant un cadre pour une politique communautaire dans le domaine de l'eau
- [4] Directive 2006/118/CE du parlement européen et du conseil du 12 décembre 2006 sur la protection des eaux souterraines contre la pollution et la détérioration
- [5] Directive 2009/90/CE de la commission du 31 juillet 2009 établissant, conformément à la directive 2000/60/CE du Parlement européen et du Conseil, des spécifications techniques pour l'analyse chimique et la surveillance de l'état des eaux
- [6] B. Lopez, A. Laurent, 2013 Campagne exceptionnelle d'analyse des substances présentes dans les eaux souterraines de métropole. Rapport final. BRGM/RP-61853-FR
- [7] Lopez B., Laurent A., Ghestem J.P. et al. (2013) Recherche de contaminants organiques dans les eaux souterraines des DOM Synthèse des travaux 2012 2013. BRGM/RP 62810 FR.
- [8] Fiche Aquaref BRGM Béflubutamide, DMST, NBBS et Sotalol Méthode d'analyse dans les eaux souterraines phase dissoute
- [9] Guide pour la demande de prestation d'échantillonnage et d'analyse physicochimique dans le cadre de la surveillance DCE Ministère de la Transition Ecologique et Solidaire Janvier 2018
- [10] Directive 2009/90/CE de la commission du 31 juillet 2009 établissant, conformément à la directive 2000/60/CE du Parlement européen et du Conseil, des spécifications techniques pour l'analyse chimique et la surveillance de l'état des eaux
- [11] Arrêté du 27 octobre 2011 portant modalités d'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques au titre du code de l'environnement
- [12] Avis relatif aux limites de quantification des couples «paramètre-matrice» de l'agrément des laboratoires effectuant des analyses dans le domaine de l'eau et des milieux aquatiques Novembre 2015
- [13] Assoumani A., Salomon M., Jouglet P., Staub P.F., Clavel L., Andrade A. (2018) Bilan du 1er cycle de surveillance de la Directive Cadre sur l'Eau Evolution des tendances des concentrations, Rapport DRC-18-167427-11774A, 45 p.

Annexe 1

Nombre de données exploitées par année et par substance

Substance	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total général
Dioctylétain cation						102	29	440	86	22	679
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxine		971			358		19	475	648	474	2945
Octachlorodibenzofuranne		972			358		19	475	648	474	2946
1,2,3,4,6,7,8-Heptachlorodibenzofurane		1023			358		19	475	648	474	2997
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxine		1023			358		19	475	648	474	2997
1,2,3,4,7,8,9-Heptachlorodibenzofurane		1023			358		19	475	648	474	2997
Chlordecone-5b-hydro	56	58	69	6	0 74	1012	944	1009	94	26	3402
Fipronil sulfone	17	14	44	2	8 26	938	919	988	555	19	3548
N,N-Dimethyl-N'-p-tolylsulphamide			30		2 2	919	1004	1220	783	296	4256
Chlorates					11	1	1016	1560	1336	492	4427
Acide acetylsalicylique			30		2 11		73	2100	3097	477	5790
Sotalol		1021	30		8 6		30	1850	3093	477	6515
1,7-Dimethylxanthine		998						2099	3093	477	6667
Cotinine		1027			6 2		41	2044	3093	477	6690
Tramadol		1027			6 2		41	2099	3093	477	6745
2-Hydroxy Ibuprofen			30		2 368		71	2099	3301	891	6762
Dibromoacétonitrile						934	1894	2067	804	1218	6917
Bromure	4	10	4		4 14	8	426	3571	2388	517	6946
Ciprofloxacine		1027	30		8 2		89	2129	3324	499	7108
Erythromycine		1027	30		8 375		50	2099	3093	477	7159
Metronidazole		1027	30		3 369		39	2131	3101	477	7177
Cafeine		1027	33	1	4 368	3	83	2126	3098	499	7251
Sulfamethoxazole		1021	33		3 362	3	200	2161	3188	491	7462
Diméthylamine	940	962	843	76	5 1164	43	71	1505	7	1218	7518
Carbamazepine		1021	33		9 376	84	200	2176	3204	487	7590
Sulfonate de perfluorooctane	4				2 1	61	488	2066	2961	2001	7594
Ofloxacine		1027	30		8 15		206	2426	3427	485	7624
Ketoprofene		1021	33		9 376	3	191	2400	3188	491	7712
Diclofenac		1020	33	8	9 460	84	273	2187	3188	491	7825
Paracetamol		1021	33		2 357	45	170	2266	3489	1001	8384

Substance	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total général
Ethynyl estradiol		1021	33	89	453	84	109	2441	3204	1607	9051
Perchlorate		1	9	953	1301	263	1212	2631	2167	525	9073
Carbamazepine epoxide		1027	33	2	8	3	191	4279	3191	491	9225
Norethindrone		1021	30	8	12		156	2396	4257	2324	10339
Ibuprofene		1020	30	2	340		197	2419	4490	2746	11381
Acide perfluorodecane sulfonique		1027				795	1214	3822	2912	1945	11725
Fosetyl		901			11		2129	2617	4050	1940	11784
Metformine		1027	30	2	358		188	2531	4590	3096	11959
Acide perfluoro-n-heptanoïque		1027	30	2		872	1295	3850	2916	1996	11998
Perfluorohexanesulfonic acid		1026			33	859	1286	3849	2987	1995	12045
Galaxolide		1027	30	2			2088	3194	4492	1453	12319
Acide perfluoro-n-hexanoïque		1027			358	872	1295	3850	2987	1995	12394
Acide perfluoro-octanoïque	4	1021	30	2	358	872	1295	3906	3054	1998	12550
Dichloropropène-1,3	1226	2301	640	1838	1529	342	1343	1458	1638	534	12849
Triclosan	35	1062	30	2			188	4431	4658	2915	13466
N-Butylbenzenesulfonamide		1027			9	934	3023	3766	4424	1610	14826
Pentabromodiphényl éther (congénère 100)	2297	3356	1987	2182	1261	137	579	1515	1132	476	14929
Pentabromodiphényl éther (congénère 99)	2297	3356	1987	2182	1261	137	579	1515	1132	476	14929
Hydrazide maleique		2	1	31	51	962	3010	3863	5201	2638	15895
Bisphenol S						911	3080	4031	5198	2700	16051
Dichloromonobromométhane	675	1012	1069	2284	1934	1069	1983	2348	2764	1003	16172
Bromoforme	731	1035	1073	2289	1936	1077	1983	2350	2758	1003	16266
Beflubutamide						915	3084	3978	5713	3076	16901
Cyanures totaux	2371	2400	1213	1402	1602	925	1810	2284	2036	958	17033
Dibromochloromethane	675	2017	1034	2255	1907	1040	1982	2346	2756	1002	17045
Cyanures libres	2266	3539	1238	974	1553	771	1703	2207	1971	951	17204
Baryum	1794	1601	358	58	891	148	2649	4808	3829	1306	17474
Benzotriazole						1075	3517	4407	6041	3191	18368
Dichloroéthylène-1,2 cis	1645	1961	1557	2245	1712	798	2543	2365	2787	1018	18662
Tolyltriazole		1027				1052	3471	4375	6017	3190	19269

Substance	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total général
Mercure	765	1329	1866	3010	2108	1184	2912	2847	2832	972	19856
Daminozide			852	843	953	1108	3145	4023	5725	3186	19972
Hydrocarbures dissous	1991	1976	2000	2411	1997	2051	2207	4033	1418	447	20531
Acetochlor OXA	132		30	2	563	1573	3726	4736	6539	3453	20891
Acetochlor ESA	132		30	2	480	1573	3748	4789	6630	3506	21027
Alachlor OXA	132		30	647	627	1557	3705	4713	6422	3426	21396
Toluene	2534	1791	2152	2995	2281	1056	2895	2546	2743	1000	22024
Bisphenol A		1027	1466	1746	2168	1521	2539	4136	4865	3075	22674
Flonicamid		14	337	204	1475	2433	4442	4297	6023	3346	22706
Trichloroéthane-1,1,1	2137	2688	2214	3158	2426	1352	2871	2391	2836	1019	23123
Alachlor ESA	132		30	647	627	1596	3675	6585	6475	3506	23410
n-Butyl Phtalate	948	1989	1052	1081	1959	1061	3279	6023	4474	1878	23755
Butyl benzyl phtalate	1016	2074	1108	1165	2046	864	3162	5982	4476	1888	23792
4-tert-butylphénol	2227	2247	2301	2755	1957	844	1889	4691	3408	1620	23972
Metolachlor OXA	132		30	647	642	1642	3950	6828	6808	3546	24362
Metolachlor ESA	132		30	647	644	1642	3898	6866	6843	3563	24402
Chloroforme	2143	3270	2806	3482	2474	1436	2949	2408	2791	1002	24792
Chrome	1768	2402	1865	2640	2023	934	3814	4512	4505	1301	25795
Thiamethoxam	23	941	111	196	1576	2222	4391	6585	6168	3481	25831
Plomb	1882	2494	1963	2721	2083	886	3834	4508	4401	1355	26159
Dichlormide	185	227	1200	1325	3197	2248	4318	4329	5952	3139	26255
Aluminium	2718	3055	2179	1886	1817	961	3811	4694	4221	1296	26670
Déméton-O	106	1078	1210	1515	2671	2302	4267	5415	5690	3177	27566
Piclorame	1640	1145	1277	1423	2339	1377	3471	6102	5635	3071	27614
Cuivre	2768	3137	2285	2673	1727	948	3773	4826	4489	1322	27980
Chlordécone	1804	1831	2509	2764	2296	2865	4840	5652	3142	394	28097
Chlormequat	11	981	3250	3326	3294	1913	3181	5309	4876	2166	28442
Fluorène	2966	2897	2226	2755	2687	1762	3987	4784	3432	950	28477
Pyrène	2981	2898	2227	2755	2676	1762	3987	4784	3434	948	28483
Chrysène	2981	2898	2227	2755	2687	1762	3987	4782	3430	948	28488

Substance	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total général
Acénaphtène	2966	2897	2227	2754	2676	1762	3987	4817	3442	950	28509
Trichloroéthylène	2714	3265	2792	3702	2999	1950	3422	2949	3372	1324	28520
Tétrachloroéthylène	2714	3267	2792	3701	3010	1952	3416	2956	3374	1320	28533
Zinc	2809	3158	2313	2720	1774	992	3879	4932	4579	1358	28546
Méthyl-2-Naphtalène	2995	2915	2235	2790	2696	1763	4861	4824	3441	964	29515
Dibenzo(a,h)anthracène	3024	2935	2246	2810	2706	1763	4854	4795	3426	969	29559
Benzo(a)anthracène	3038	2935	2246	2813	2714	1760	4866	4803	3452	969	29627
Phénanthrène	3024	2935	2245	2810	2714	1762	4866	4835	3462	969	29653
Clethodim	993	1976	1215	1693	2904	2790	4765	4349	5771	3115	29716
Naphtalène	3058	2967	2247	3008	2753	1872	4914	4857	3519	991	30217
Indéno(1,2,3-cd)pyrène	3195	3135	2426	3075	2784	1822	4890	4831	3471	977	30637
Benzo(b)fluoranthène	3195	3135	2455	3077	2784	1823	4888	4831	3472	979	30670
Fluoranthène	3213	3121	2450	3077	2792	1819	4887	4831	3473	976	30670
Imazamox	1029	1953	1115	1206	3470	2169	4266	6346	6087	3445	31223
Antimoine	2502	2772	2269	3004	2703	1959	4019	5145	5210	1744	31358
Cadmium	2566	3163	2646	3388	2759	1650	4542	5231	5127	1753	32857
4-tert-Octylphenol	3189	3555	4420	5548	3251	1749	3086	4746	3435	2034	35046
Arsenic	3346	3657	2828	3459	2895	1741	4602	5690	5283	1690	35223
Fipronil	2798	1899	3337	3752	4281	4210	4023	4452	3943	2996	35826
Atrazine 2-hydroxy-desethyl	314	1462	690	1117	3124	4229	6888	7031	7196	3740	35936
Nickel	3550	3862	3013	3729	2450	2040	4895	5637	5124	1736	36068
Fosthiazate	1439	2352	1489	2072	3066	3832	5952	6408	6220	3434	36401
Foramsulfuron	1967	2717	1984	1953	3703	2605	4952	6547	6351	3564	36488
4-nonylphenols ramifiés	3199	3501	4439	5546	3249	1908	3689	5281	4014	2160	37019
asulame	3652	3307	3292	3342	3689	1804	3543	6186	5978	3222	38149
mepiquat	4280	5044	4273	4069	4069	1827	3119	5271	4784	2115	38986
Sélénium	3644	4208	3711	4102	3842	2938	4917	5627	5276	1755	40051
Di(2-ethylhexyl)phtalate	2310	3348	3374	5008	4572	3049	5482	6215	4944	2017	40330
Quinmerac	1651	2119	2676	4509	4662	3266	4897	6455	6387	3598	40365
Trinexapac-ethyl	2522	2633	3034	3256	4222	3804	5896	6413	6332	3543	41792

Substance	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total général
Florasulam	2272	3287	2824	3280	4869	3928	6088	6438	6281	3546	42958
Didemethylisoproturon	2508	3228	3321	3609	4910	3578	5956	6419	6449	3120	43243
Mésotrione	3115	2820	3257	3343	5212	3920	6133	6793	6642	3627	45007
Mesosulfuron methyle	1894	2784	3344	3878	5539	4588	6576	6730	6440	3597	45515
Fénarimol	1826	2709	3953	4769	5400	4435	6366	6475	6086	3418	45572
Sulfosulfuron	2576	3549	2887	3711	5252	4334	6432	6587	6537	3603	45613
Bore	5577	5531	5032	5298	4517	2903	4749	5923	4463	1743	45768
Heptachlore époxyde endo trans	3547	4064	4718	4813	5037	2659	5806	5973	6397	2865	46014
Pentachlorophénol	2784	4655	5524	5688	5409	4117	4550	5000	5363	3100	46335
Thiafluamide	2538	3496	3757	4574	4417	4333	6362	6655	6459	3629	46365
Diquat	5344	5394	4546	5193	4978	3503	4574	5791	4875	2149	46482
Boscalid	1417	2336	4285	4896	5966	4271	6173	6992	6508	3585	46566
Dichlorvos	3453	3928	4063	3924	4346	4453	6312	6715	6461	3057	46849
Iodosulfuron-méthyl	4888	5777	4936	5721	6431	4936	3666	3736	3888	3171	47295
Pyrimiphos-méthyl	3267	3752	4095	4883	5460	4233	6367	6497	6265	3407	48361
Metconazole	2815	3699	4234	4742	5368	4375	6415	6704	6452	3618	48567
Prosulfuron	2723	4500	4113	4600	5274	4363	6449	6626	6567	3622	48982
Imazalil	3310	4649	4066	4831	5477	4469	6472	6425	6254	3024	49122
Heptachlore époxyde exo cis	3791	4541	5127	5431	5474	3120	6270	6489	6846	3406	50630
Métaldéhyde	5292	5348	5191	5566	5442	3548	5310	6771	5778	2629	51004
Atrazine déisopropyl déséthyl	2382	3380	4060	5530	6551	4581	6843	7392	7337	3831	52024
Terbumeton désethyl	4304	3936	4906	5519	6028	4616	6588	6800	6491	3623	52956
Ethidimuron	4421	3988	4882	5514	5925	4522	6535	6746	6660	3665	53003
Cymoxanil	5512	4681	4668	5183	6116	4380	6076	6587	6369	3495	53204
Chlorprophame	3248	3776	5487	6812	6357	4564	6558	6886	6359	3511	53693
Pirimicarbe	3433	3854	5812	6444	6390	4408	6225	7037	6557	3634	53931
Dinoterbe	4913	4116	5097	5720	6457	5006	6483	6678	6558	3564	54737
Thifensulfuron méthyl	4815	4834	5155	5577	6322	4943	6589	6790	6626	3663	55459
Malathion	5503	6035	5532	5715	5641	4374	6326	6882	6482	3341	55968
Prosulfocarbe	6145	5263	5267	5490	6365	4616	6068	6677	6395	3574	55997

Substance	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total général
Hexachlorocyclohexane bêta	5486	5960	6112	6955	6646	4359	6096	6040	5948	2395	56132
Triadiménol	5285	5727	6149	6406	5830	4555	6079	6681	6347	3056	56250
Chloridazone	6081	6141	6232	6741	5545	3508	5630	6446	6329	3532	56320
Endosulfan alpha	6131	6182	6645	6780	6674	4021	5714	5972	5901	2635	56790
Dicamba	5833	5036	5333	5882	6302	4883	6733	6759	6497	3535	56938
Flurtamone	5193	5665	5900	6248	6117	4715	6384	6630	6458	3567	57022
2,6-Dichlorobenzamide	4431	5776	5966	6534	6183	4650	6577	6755	6442	3583	57032
Lénacile	5638	5657	5813	6522	6334	4899	6610	6600	5836	3098	57142
Hexachlorocyclohexane delta	5441	5918	6040	6933	6568	4879	6601	6509	5892	2357	57273
Diméthomorphe	5419	5059	5343	5974	6434	5062	6676	6880	6582	3700	57274
Propiconazole	5772	5857	5364	5801	6474	5031	6460	6693	6566	3145	57298
Dieldrine	6130	6208	6677	6831	6727	4078	5765	6186	6103	2481	57321
Difénoconazole	5257	5714	5873	6694	6470	5043	6607	6591	5805	3148	57347
Monuron	5043	5103	6434	6616	6207	4193	6615	6687	6635	3685	57363
Chlorpyriphos-méthyl	4928	5868	5998	6842	6571	5094	6533	6519	6282	2826	57596
Fluroxypyr	4991	5515	5980	6749	6430	5018	6561	6630	6184	3406	57609
Iprodione	5689	5738	6195	6747	6314	4810	6510	6819	5757	2990	57704
Imidaclopride	5878	5176	5473	5886	6434	5058	6605	7024	6720	3746	58145
Diazinon	5674	6147	6544	6870	6638	5192	6584	6085	5825	2542	58236
Anthraquinone	5605	5671	5913	6678	6411	5019	6525	6550	6481	3402	58390
Dichlorprop	6022	5220	5678	6124	6635	5088	6609	6519	6736	3733	58509
Piperonyl butoxyde	4971	5947	6372	6502	6121	4736	6655	6996	6553	3578	58566
Terbuthylazine hydroxy	4809	3997	5466	6390	6811	5445	7086	7396	7318	3837	58700
Clomazone	5253	5748	6147	6846	6410	4985	6531	6751	6465	3617	58888
Metsulfuron méthyle	5621	6121	5607	5913	6577	5169	6711	6844	6530	3665	58903
Métobromuron	5193	5256	6545	7051	6636	5029	6655	6792	6461	3147	58910
Ethofumésate	6218	6239	6598	6862	6446	4760	6308	5887	6401	3573	59427
Diméthoate	5592	6077	6411	6963	6446	4397	6586	6935	6594	3641	59777
Pyriméthanil	5608	6035	6384	6934	6514	4835	6562	6732	6484	3609	59832
Métamitrone	6498	5690	5968	6185	6740	5315	6360	6604	6631	3721	59857

Substance	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total général
Cyproconazole	5971	5960	6366	6892	6415	5043	6508	6773	6459	3628	60160
Amétryne	5415	5350	6775	6988	6762	5195	6833	6967	6661	3226	60317
Aclonifène	6260	6255	6608	7061	6572	4985	6753	6672	6071	2986	60358
Aminotriazole	7036	7156	7056	7457	6915	4832	5628	6734	5068	2576	60588
Heptachlore	6737	6567	6294	6222	5956	5263	6725	6769	6561	3437	60666
Napropamide	6039	6066	6423	7054	6612	5168	6530	6629	6496	3624	60776
AZOXYSTROBINE	5904	5980	6331	6863	6406	5057	6739	6943	6691	3722	60781
Diflufenicanil	5978	5971	6342	7031	6559	5272	6979	7247	6219	3262	60995
Dimétachlore	6355	6159	6226	6707	6537	5147	6768	6897	6545	3644	61120
Endosulfan bêta	6358	6697	7122	7401	7188	4468	6143	6479	6404	3043	61438
Triclopyr	6126	6155	6608	7090	6648	5013	6788	6528	6731	3710	61542
Cyprodinil	6379	6408	6855	7039	6564	5176	6568	6850	6577	3656	62207
Epoxiconazole	6419	6402	6707	7010	6502	5059	6668	7062	6584	3650	62208
Carbendazime	6846	6591	6636	6814	6689	4640	6474	7207	6645	3547	62226
Sulcotrione	6662	6475	6489	6910	6574	5130	6725	6905	6714	3687	62416
Métribuzine	6188	6214	6643	6956	6768	5325	6887	6968	6669	3753	62516
Propyzamide	6128	7132	6518	7013	6625	5256	6737	7089	6762	3674	63069
Terbutryne	6328	6296	6686	7200	6850	5332	6954	7026	6720	3763	63300
Fenpropidine	6693	6478	6620	7074	6674	5294	6916	7178	6601	3694	63357
Bromacil	6896	6684	6646	7231	6770	5319	6920	7010	6791	3208	63610
2,4-D	6864	6676	6710	7240	6771	5333	7018	7023	7024	3816	64620
Prochloraz	6743	7439	6641	7150	6730	5391	6872	7052	6774	3804	64741
Tébuconazole	7008	6637	6698	7216	6698	5355	7068	7371	6899	3819	64914
Acétochlore	7017	6676	6680	7073	7360	5303	6893	6978	7214	3904	65233
2,4-MCPA	7013	6796	6831	7336	6879	5357	7006	7021	7015	3838	65237
Linuron	7541	7264	7292	7309	6939	4799	6969	7210	6960	3858	66286
Hexachlorocyclohexane gamma	7601	7641	7625	7811	7159	5485	7240	7085	6028	2626	66436
2-hydroxy atrazine	6979	7002	7114	7623	7120	5502	7411	7585	7514	3934	67929
АМРА	7587	7617	7341	7853	7302	5535	7432	7293	7456	3916	69468
Hexazinone	7285	7220	7201	7875	7364	5927	7490	7696	7386	3918	69507

Substance	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Total général
Oxadixyl	7229	8138	7187	7838	7266	5801	7455	7565	7147	3830	69591
Glyphosate	7601	7629	7640	7850	7299	5533	7429	7313	7453	3914	69797
Alachlore	7637	7485	7449	7938	7401	5701	7442	7570	7250	3908	69916
Terbuthylazine désethyl	7735	7617	7704	7920	7255	5424	7538	7327	7326	3950	69941
Métazachlore	7832	7707	7630	7962	7350	5940	7429	7475	7263	3859	70582
Bentazone	7378	8340	7360	7977	7468	5843	7391	7333	7539	3967	70741
Chlortoluron	7780	8508	7636	8095	7427	5716	7529	7665	7356	3973	71830
Métolachlore total	8056	8815	7903	8023	7252	5988	7518	7448	7375	3934	72447
Isoproturon	8145	8844	7937	8050	7387	5781	7484	7611	7279	3907	72570
Terbuthylazine	8203	8053	7993	8116	7504	6074	7378	7770	7487	4006	72729
Atrazine déisopropyl	7986	8676	7832	7955	7435	6097	7663	7816	7531	3993	73119
Atrazine déséthyl	8019	8714	7857	7990	7408	5950	7673	7817	7595	4044	73212
Diuron	8156	8864	7974	8071	7464	5817	7594	7743	7577	3962	73367
Simazine	8208	8924	8004	8142	7573	6163	7743	7895	7584	4037	74418
Atrazine	8234	8940	8045	8162	7579	6133	7763	7892	7599	4041	74533

Annexe 2

Statistiques sur les données de surveillance

Le tableau de cette annexe présente pour les années 2010-2018 quelques statistiques sur les données de surveillance (données quantifiées) de la base ADES : se reporter au paragraphe 9.2. Les statistiques sont les suivantes (en µg/l pour les concentrations) :

- Nombre de données
- Concentration moyenne
- Concentration médiane
- Percentile 90
- Percentile 95
- Concentration maximale (cf avertissement du paragraphe 9.2)

Sandre	Paramètre	Nombre de données quantifiées	Concentration moyenne	Médiane	quantile_90	quantile_95	Concentration max.
1082	Benzo(a)anthracène	632	0,0318	0,004	0,03019	0,0709	4,225
1084	Cyanures libres	1096	0,5389	0,3	0,51	0,8	50
1092	Prosulfocarbe	98	0,0611	0,0205	0,1237	0,1732	1,75
1101	Alachlore	99	0,0991	0,02	0,2516	0,464	1,4
1104	Amétryne	111	0,0116	0,011	0,015	0,0185	0,022
1105	Aminotriazole	236	0,2126	0,05	0,375	0,86	7,84
1107	Atrazine	14192	0,0394	0,029	0,08	0,11	1
1108	Atrazine déséthyl	23613	0,0700	0,04	0,159	0,223	1,65
1109	Atrazine déisopropyl	5121	0,0369	0,027	0,079	0,1	1,11
1113	Bentazone	4319	0,3980	0,025	0,1372	0,247	711
1116	Benzo(b)fluoranthène	915	0,0179	0,0044	0,028	0,04979	1,43
1122	Bromoforme	608	2,5539	1,6	5,286	7,5495	37
1129	Carbendazime	263	0,0179	0,007	0,04	0,06	0,56
1133	Chloridazone	753	0,0113	0,007	0,02	0,03	0,31
1135	Chloroforme	1502	1,4901	0,58	2,92	4,795	112
1136	Chlortoluron	1860	0,0930	0,014	0,1173	0,24305	16,9
1139	Cymoxanil	4	0,1535	0,114	0,3162	0,3411	0,366
1141	2,4-D	304	0,1092	0,01	0,08	0,1704	19,7
1157	Diazinon	15	0,0413	0,04	0,1	0,106	0,12
1158	Dibromochloromethane	571	2,9987	1,6	6,85	11	66
1167	Dichloromonobromométhane	393	2,1387	1,18	5,2	7,6	25
1169	Dichlorprop	87	0,0325	0,02	0,0734	0,1097	0,39
1170	Dichlorvos	8	0,0100	0,0075	0,0193	0,02315	0,027
1173	Dieldrine	332	0,1072	0,0605	0,248	0,38845	0,865
1175	Diméthoate	4	0,0225	0,025	0,03	0,03	0,03
1176	Dinoterbe	594	0,0231	0,008	0,06	0,10075	0,406
1177	Diuron	2004	0,0377	0,02	0,077	0,1194	3
1178	Endosulfan alpha	18	0,0110	0,009	0,0239	0,0269	0,032

Sandre	Paramètre	Nombre de données quantifiées	Concentration moyenne	Médiane	quantile_90	quantile_95	Concentration max.
1179	Endosulfan bêta	14	0,0141	0,011	0,0299	0,03235	0,033
1184	Ethofumésate	136	0,0363	0,03	0,0665	0,0925	0,241
1185	Fénarimol	7	0,0087	0,008	0,015	0,0195	0,024
1191	Fluoranthène	1092	0,3218	0,00857	0,0460	0,08756	152,8
1197	Heptachlore	25	0,0002	0,000080	0,00040	0,00057	0,0009
1201	Hexachlorocyclohexane bêta	470	0,3048	0,029	0,6242	1,373	12,813
1202	Hexachlorocyclohexane delta	76	0,0183	0,0158	0,0375	0,0425	0,089
1203	Hexachlorocyclohexane gamma	207	0,0188	0,009	0,0294	0,0615	0,554
1204	Indéno(1,2,3-cd)pyrène	915	0,0135	0,0028	0,02296	0,03918	1,504
1206	Iprodione	40	0,0410	0,0095	0,112	0,176	0,303
1208	Isoproturon	1100	0,0651	0,01	0,1	0,21	20,13
1209	Linuron	23	0,0245	0,02	0,0478	0,0536	0,09
1210	Malathion	25	0,0065	0,0048	0,01147	0,0159	0,03
1212	2,4-MCPA	227	0,1064	0,02	0,0934	0,1633	7,9
1215	Métamitrone	109	0,0642	0,009	0,1038	0,3202	1,5
1221	Métolachlore total	2421	0,0831	0,022	0,14	0,28	12
1225	Métribuzine	238	0,0299	0,0105	0,0506	0,08915	1,53
1228	Monuron	168	0,0501	0,01	0,2106	0,24825	0,329
1235	Pentachlorophénol	40	0,0670	0,0205	0,182	0,2438	0,36
1253	Prochloraz	48	0,0256	0,01	0,059	0,106	0,31
1257	Propiconazole	538	0,0795	0,013	0,2059	0,36375	1,62
1263	Simazine	6067	0,0227	0,016	0,05	0,065	0,61
1268	Terbuthylazine	540	0,0247	0,013	0,06	0,09	0,33
1269	Terbutryne	88	0,0279	0,0075	0,103	0,1465	0,2
1272	Tétrachloroéthylène	1608	5,7923	1,515	13	24	98,8
1276	Tétrachlorure de carbone	112	2,1232	0,705	4,8	7,06	27
1278	Toluene	214	4,5800	0,365	1,221	2,5115	640
1280	Triadiménol	10	0,0091	0,0075	0,0137	0,01685	0,02

Sandre	Paramètre	Nombre de données quantifiées	Concentration moyenne	Médiane	quantile_90	quantile_95	Concentration max.
1284	Trichloroéthane-1,1,1	783	2,5544	1	5,9	9,168	51
1286	Trichloroéthylène	1081	1,3922	0,69	2,46	3,47	161
1288	Triclopyr	154	0,4229	0,02	0,1467	0,30245	56,5
1359	Cyprodinil	43	0,0436	0,02	0,086	0,1083	0,45
1362	Bore	31194	54,0555	15	57,7	98,935	250000
1369	Arsenic	13962	2,9071	0,4	4,44	11	474
1370	Aluminium	8360	65,0308	5,23	67,23	140,05	155278
1376	Antimoine	2947	0,3190	0,11	0,7	1,1	10
1382	Plomb	5546	0,7586	0,23	1,09	2,075	110
1383	Zinc	15826	19,3871	5,31	28	50,5	8000
1385	Sélénium	10695	1,7460	0,76	4	6,2	701
1386	Nickel	11675	1,8909	0,99	3,7	6	788
1387	Mercure	334	0,3502	0,021	0,2	0,3835	14,26
1388	Cadmium	4600	0,1068	0,0345	0,15	0,3	39
1389	Chrome	8449	0,7956	0,32	1,4	2,4	179
1390	Cyanures totaux	2514	1,6351	0,4	1,4	3,1	360
1392	Cuivre	15578	3,0290	1,01	5,07	8,6015	3830
1396	Baryum	14017	49,2608	25,2	105	153	1846
1403	Diméthomorphe	220	0,0275	0,011	0,05	0,0605	0,72
1406	Lénacile	379	0,1027	0,02	0,12	0,22	6,76
1414	Propyzamide	368	0,1288	0,02	0,21	0,40685	11
1432	Pyriméthanil	16	0,0527	0,01	0,0925	0,21	0,45
1453	Acénaphtène	109	2,0013	0,013	0,112	3,939	143,5
1456	Dichloroéthylène-1,2 cis	526	6,3541	0,76	3,9	5,675	634
1462	n-Butyl Phtalate	1233	0,1668	0,1	0,3	0,4291426	2,5
1474	Chlorprophame	5	0,0412	0,0114	0,1068	0,1384	0,17
1476	Chrysène	683	0,0268	0,0046	0,03696	0,07262	2,685
1480	Dicamba	39	0,1386	0,02	0,1112	1,201	1,77

Sandre	Paramètre	Nombre de données quantifiées	Concentration moyenne	Médiane	quantile_90	quantile_95	Concentration max.
1506	Glyphosate	931	1,9313	0,055	0,29	0,61	1005
1515	Métobromuron	20	0,0146	0,0088	0,0214	0,0302	0,129
1517	Naphtalène	661	0,1241	0,011	0,05	0,103	43,49
1519	Napropamide	203	0,0390	0,01	0,06	0,1189	1,19
1524	Phénanthrène	993	0,9647	0,0066	0,03536	0,0706	261,1
1528	Pirimicarbe	9	0,0223	0,01	0,058	0,074	0,09
1537	Pyrène	853	0,2904	0,008	0,045	0,10648	108,8
1540	Chlorpyriphos-méthyl	5	0,0035	0,0012	0,0082	0,0101	0,012
1618	Méthyl-2-Naphtalène	342	0,1828	0,01	0,03953	0,10542	34,05
1621	Dibenzo(a,h)anthracène	324	0,0055	0,00015	0,00707	0,02	0,32
1623	Fluorène	144	3,0277	0,0122	0,09772	7,9837	191,1
1662	Sulcotrione	19	0,0642	0,018	0,1222	0,2685	0,498
1666	Oxadixyl	3156	0,0357	0,016	0,09	0,14	0,6
1670	Métazachlore	2036	0,0441	0,017	0,1065	0,183	1,74
1673	Hexazinone	1149	0,0208	0,011	0,05	0,083	0,19
1680	Cyproconazole	447	0,1326	0,01	0,0588	0,1612	16,2
1686	Bromacil	876	0,2102	0,03	0,494	0,76275	6,77
1688	Aclonifène	26	0,0247	0,018	0,044	0,071	0,118
1694	Tébuconazole	397	0,0573	0,02	0,1116	0,1922	2,04
1699	Diquat	9	0,0367	0,03	0,062	0,086	0,11
1700	Fenpropidine	36	0,0086	0,0045	0,0195	0,0375	0,052
1704	lmazalil	31	0,0488	0,06	0,09	0,0975	0,12
1708	Piclorame	25	0,0220	0,012	0,04	0,0576	0,084
1709	Piperonyl butoxyde	75	0,1263	0,019	0,24	0,48	3,3
1738	Dibromoacétonitrile	29	3,3884	0,33	9,7726	10,23	10,49
1743	Endosulfan	16	0,0216	0,02	0,0535	0,06025	0,064
1744	Epoxiconazole	726	0,0151	0,006	0,028	0,05075	0,4
1748	Heptachlore époxyde exo cis	37	0,0193	0,01	0,0466	0,0532	0,059

Sandre	Paramètre	Nombre de données quantifiées	Concentration moyenne	Médiane	quantile_90	quantile_95	Concentration max.
1749	Heptachlore époxyde endo trans	87	0,0103	0,008	0,015	0,023	0,047
1752	Chlorates	855	48,22	24	76,6	113,7	5800
1763	Ethidimuron	1193	0,0276	0,01	0,07	0,1	0,75
1765	Fluroxypyr	89	0,2224	0,027	0,1368	0,246	12,3
1796	Métaldéhyde	645	0,0996	0,04	0,19	0,326	5,54
1797	Metsulfuron méthyle	1156	0,0652	0,03	0,12	0,21	2,24
1814	Diflufenicanil	759	0,0177	0,008	0,03	0,0521	0,877
1816	Fosetyl	5	0,0569	0,0289	0,12244	0,14972	0,177
1830	Atrazine déisopropyl déséthyl	9217	0,1300	0,08	0,278	0,4104	2,38
1832	2-hydroxy atrazine	6183	0,0266	0,02	0,0458	0,06	2,37
1866	Chlordécone	497	3,3662	0,75	7,938	20,32	45,7
1877	Imidaclopride	678	0,0317	0,0159	0,06	0,10815	0,64
1879	Metconazole	46	0,0120	0,006	0,0215	0,03725	0,09
1903	Acétochlore	166	0,0265	0,013	0,06	0,08375	0,39
1905	Difénoconazole	15	0,0450	0,02	0,078	0,162	0,33
1907	AMPA	1290	0,2084	0,06	0,24	0,54	18
1913	Thifensulfuron méthyl	38	0,0394	0,028	0,0942	0,1145	0,14
1924	Butyl benzyl phtalate	131	0,3948	0,08	0,55	0,765	21
1940	Thiafluamide	307	0,0361	0,009	0,066	0,1901	0,712
1951	AZOXYSTROBINE	202	0,0290	0,01	0,0609	0,0914	0,652
1954	Terbuthylazine hydroxy	1582	0,0246	0,02	0,04	0,05	1,73
1958	4-nonylphenols ramifiés	2557	0,3718	0,19	0,85	1,311	7,39
1959	4-tert-Octylphenol	301	0,1109	0,07	0,23	0,32	0,988
1965	asulame	88	0,0919	0,06	0,2226	0,28705	0,75
1969	mepiquat	10	0,1430	0,065	0,304	0,502	0,7
2008	Flurtamone	97	0,0212	0,007	0,0294	0,0426	0,615
2009	Fipronil	18	0,0266	0,017	0,0669	0,1049	0,11
2011	2,6-Dichlorobenzamide	2136	0,1300	0,022	0,13	0,23	18,86

Sandre	Paramètre	Nombre de données quantifiées	Concentration moyenne	Médiane	quantile_90	quantile_95	Concentration max.
2013	Anthraquinone	344	0,0696	0,019	0,0907	0,14555	5
2017	Clomazone	300	0,9359	0,0105	0,191	4,71	51,3
2045	Terbuthylazine désethyl	1909	0,0302	0,02	0,069	0,1	0,26
2051	Terbumeton désethyl	1352	0,1193	0,04	0,28	0,4827	3,25
2076	Mésotrione	48	0,1083	0,04	0,139	0,1699	2,58
2085	Sulfosulfuron	10	0,0148	0,009	0,0302	0,0401	0,05
2087	Quinmerac	477	0,0904	0,019	0,18	0,3602	4,38
2096	Trinexapac-ethyl	1	0,0200	0,02	0,02	0,02	0,02
2534	Prosulfuron	90	0,0250	0,0145	0,0591	0,0755	0,174
2546	Dimétachlore	816	3,6352	0,011	0,0825	0,21	2210
2563	lodosulfuron-méthyl	3	0,0183	0,009	0,0362	0,0396	0,043
2566	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxine	298	6,4743	4,3	11	16,371	130
2575	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxine	601	151416	0,96	3,9	800000	12000000
2578	Mesosulfuron methyle	36	0,0288	0,02	0,055	0,06475	0,214
2596	1,2,3,4,6,7,8-Heptachlorodibenzofurane	362	9118	1	2,69	3,5	800000
2597	1,2,3,4,7,8,9-Heptachlorodibenzofurane	50	0,8460	0,645	1,31	1,765	2,6
2610	4-tert-butylphénol	692	0,0756	0,03	0,1782	0,2736	5,108
2629	Ethynyl estradiol	31	39,97	30	70	115	150
2744	Fosthiazate	1	0,1410	0,141	0,141	0,141	0,141
2766	Bisphenol A	1963	2,0359	0,109	0,4794	0,8346	819
2773	Diméthylamine	51	5,2271	4,56	8,75	10,9	12,200
2810	Florasulam	37	0,0142	0,007	0,022	0,0564	0,104
2847	Didemethylisoproturon	4	0,0250	0,025	0,03	0,03	0,03
2915	Pentabromodiphényl éther (congénère 100)	3	0,0032	0,0006	0,007	0,0078	0,0086
2916	Pentabromodiphényl éther (congénère 99)	11	0,0047	0,0008	0,0018	0,02255	0,0433
2929	Dichlormide	2	0,0690	0,069	0,1162	0,1221	0,128
2962	Hydrocarbures dissous	171	995,16	125	960	2395	100000
2978	Clethodim	4	0,1085	0,0935	0,222	0,231	0,24

Sandre	Paramètre	Nombre de données quantifiées	Concentration moyenne	Médiane	quantile_90	quantile_95	Concentration max.
2986	Imazamox	170	0,0297	0,009	0,0772	0,1451	0,453
3159	Atrazine 2-hydroxy-desethyl	383	0,0523	0,03	0,09	0,15	1,17
5248	Octachlorodibenzofuranne	77	10,76	6,7	16	23,2	168
5296	Carbamazepine	467	17,99	10	33	52,4	507
5299	N-Butylbenzenesulfonamide	839	3,7538	0,173	1,298	2,761	1390
5347	Acide perfluoro-octanoïque	850	10,6922	4,3	16,1	25	1050
5349	Diclofenac	117	56,1949	16,7	61,2	217,2	1100
5350	Ibuprofene	67	30,8254	16	76,2	134,2	156
5353	Ketoprofene	34	31,9197	11	57,4	138,182	354
5354	Paracetamol	465	557,83	29	150	228	156000
5356	Sulfamethoxazole	151	16,8742	9	25	41	492
5400	Norethindrone	6	33,8333	13,5	86	107	128
5424	Sotalol	58	20,3569	11,5	40,6	69,75	108
5430	Triclosan	53	18,8491	7	57,8	89,2	156
5526	Boscalid	1517	0,0382	0,01	0,077	0,15	1,61
5554	Chlormequat	7	0,0886	0,04	0,212	0,236	0,26
5645	Hydrazide maleique	1	1,0000	1	1	1	1
5977	Acide perfluoro-n-heptanoïque	453	0,0122	0,0046	0,0196	0,024	0,811
5978	Acide perfluoro-n-hexanoïque	782	0,0219	0,006	0,037	0,062	2,85
6219	Perchlorate	2387	2,3568	0,97	5,7	8,9	89,1
6260	1-(2,6-Dichloro-4-trifluoromethylphenyl)-3- cyano-4-trifluoromethanesul fonyl-5- aminopyrazole	3	0,0340	0,036	0,036	0,036	0,036
6390	Thiamethoxam	32	0,0600	0,036	0,1279	0,1545	0,417
6393	Flonicamid	17	0,0912	0,048	0,2466	0,3066	0,429
6505	Bromure	3527	513,16	66	220	400	104000
6519	Cafeine	1008	0,0654	0,023	0,1118	0,1966	2,903
6520	Cotinine	350	0,0216	0,0095	0,0403	0,08295	0,716

Sandre	Paramètre	Nombre de données quantifiées	Concentration moyenne	Médiane	quantile_90	quantile_95	Concentration max.
6522	Erythromycine	47	0,0658	0,008	0,0694	0,2102	1,872
6533	Ofloxacine	11	0,0408	0,032	0,072	0,076	0,08
6540	Ciprofloxacine	7	0,0227	0,027	0,0376	0,0403	0,043
6550	Acide perfluorodecane sulfonique	37	0,0034	0,003	0,0064	0,0084	0,02
6560	Acide sulfonique de perfluorooctane	748	0,0090	0,003	0,02265	0,037915	0,232
6561	Sulfonate de perfluorooctane	641	0,0125	0,003	0,0298	0,0522	0,81
6577	Chlordecone-5b-hydro(*)	226	0,1483	0,0475	0,3855	0,57875	1,680
6616	Di(2-ethylhexyl)phtalate	3156	2,0395	0,42	1,29	2,0075	2560
6618	Galaxolide	243	0,0600	0,039	0,128	0,1649	0,426
6660	Tolyltriazole	675	0,1023	0,034	0,169	0,3085	6,947
6720	Tramadol	250	0,0192	0,012	0,039	0,0604	0,223
6725	Carbamazepine epoxide	34	0,0119	0,0105	0,024	0,02705	0,032
6731	Metronidazole	20	0,0766	0,0175	0,2131	0,3699	0,596
6735	Acide acetylsalicylique	38	0,0486	0,0435	0,093	0,105625	0,1318
6751	1,7-Dimethylxanthine	99	0,2393	0,111	0,4424	0,7905	4,304
6755	Metformine	330	0,1598	0,018	0,1551	0,31985	30,1
6800	Alachlor ESA	1830	0,2489	0,1	0,58	0,86495	6,09
6824	N,N-Dimethyl-N'-p-tolylsulphamide	1	0,0014	0,0014	0,0014	0,0014	0,0014
6830	Perfluorohexanesulfonic acid	873	0,0122	0,005	0,02264	0,04	0,859
6853	Metolachlor OXA	1632	0,0828	0,031	0,1636	0,31	1,88
6854	Metolachlor ESA	6368	0,2852	0,086	0,7236	1,383	8,8
6855	Alachlor OXA	60	0,0530	0,04	0,0856	0,1853	0,251
6856	Acetochlor ESA	843	0,1403	0,088	0,3518	0,4248	1,098
6862	Acetochlor OXA	26	0,0580	0,0455	0,109	0,127	0,179
7012	2-Hydroxy Ibuprofen	46	0,0656	0,015	0,154	0,246	0,65
7494	Dioctylétain cation	4	0,0100	0,008	0,0156	0,0168	0,0180
7543	Benzotriazole	292	0,1391	0,0415	0,2682	0,48935	4,67
7594	Bisphenol S	25	0,1148	0,057	0,2908	0,32	0,44

Centre scientifique et technique Direction de l'Eau, de l'Environnement, des Procédés et Analyses

3, avenue Claude-Guillemin
BP 36009 – 45060 Orléans Cedex 2 – France – Tél. : 02 38 64 34 34

www.brgm.fr