

Écosystèmes estuariens et poissons migrateurs estuariens - Cestas

Laboratoire d'écologie halieutique

Etat d'avancement des travaux sur l'indicateur poisson

Christine Delpech, Mario Lepage, Stéphanie Pasquaud, Anne Courrat, Delphine Nicolas, Michel Girardin, Philippe Boët, Jérémy Lobry, Olivier Le Pape, Didier Pont

- > Analyse des données des campagnes d'inventaire DCE
 - Nécessité de travailler à l'échelle de la station (trait de chalut ou capétchade)
- > Etat de référence difficile à déterminer
 - Pas de site de référence
 - Nécessité de construire des références par zone haline

- Utilisation de pressions anthropiques pour qualifier l'état des masses d'eau
- > Analyse par Modèles Linéaires Généralisés (GLM)

«Analyse par GLM

- > Expliquer la variabilité d'une métrique en fonction
 - du protocole
 - des caractéristiques hydromorphologiques de la masse d'eau
 - de pressions anthropiques
- Permet d'évaluer l'effet d'une pression sur une métrique en retirant au préalable la part de variabilité expliquée par le protocole et les facteurs hydromorphologiques.
- > Exemple de modèle
- RT ~ protocole (saison + salinité + profondeur) + Type d'estuaire (surface + écorégion) + pression de pollution

«Métriques candidates sélectionnées

- Richesse taxonomique / Densité totale
- Métriques de diversité fonctionnelle selon des guildes :

Nombre d'espèces / présence-absence / densité

- Guildes écologiques:
 - Espèces migratrices amphibalines
 - · Espèces résidentes ++ ou --
 - Espèces d'eau douce
- · Espèces de juvéniles marins
- Espèces de juvéniles saisonniers
- Guildes trophiques:
 - Espèces piscivores
 - Espèces prédatrices d'invertébrés benthiques
 - · Espèces omnivores ++ ou --
 - Espèces zooplanctonophages + ou -
- Guilde de répartition
 - Espèces benthiques
 - Aquaref 3-4 Juin 2008

Réponse attendue à la pression

«Facteurs retenus

	Estuaires	Lagunes
Facteurs liés au protocole	engin saison salinité profondeur	saison salinité profondeur
Facteurs géographiques et hydromorphologiques	écorégion surface du système	connexion à la mer * lido * tributaire * surface du système

^{*} Info fournie par CREOCEAN

Travail sur la typologie des lagunes
pour le compte de l'AERMC

«Pressions testées

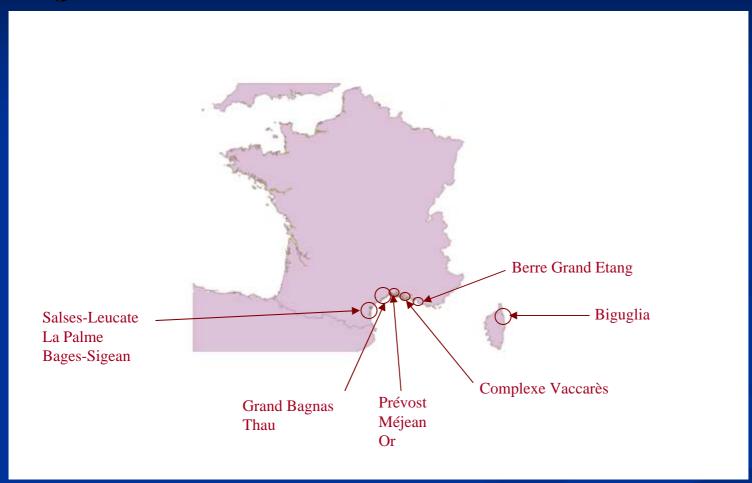
- > Estuaires
 - Indice global de pression de pollution :
 - Métaux + Polluants organiques
- > Lagunes
 - Indice global de pression de pollution et caractéristique du système :
 - Métaux + Polluants organiques + Pesticides + MES + Nitrates + Phosphates
 - Indice global de pression d'occupation des sols :
 - Zones urbaines + Zones industrielles + Zones agricoles
- Pour l'instant pas de réponse biologique par rapport aux pression hydromorphologique

« Estuaires

Nb d'estuaires = 13

Réponses aux pressions choix des métriques

Normes points de référence


	Engin	Saison	Salinité en classe	Profondeur	Ecorégion
RT	Х		Х	Х	Х
Densité_totale	Х			Х	Х
Nbre d'esp CA	Х		Х	Х	Х
Densité CA			Х	Х	Х
Pres_abs_CA	Х	Х	Х	Х	Х
Nbre d'esp ER	X	Х	Х		
Densité ER	X	Х		X	Х
Pres_abs_ER		Х	Х		
Nbre d'esp FW	X	Х	Х	Х	Х
Densité FW	Х			Х	
Pres_abs_FW		Х	Х	Х	Х
Nbre d'esp MJ	X		Х	X	Х
Densité MJ		Х		X	Х
Pres_abs_MJ	X		Х	X	Х
Nbre d'esp MS	X		X		Х
Densité MS	X	Х	X		
Pres_abs_MS	X	Х	X		
Nbre d'esp B	X	Х	X	X	Х
Densité B	X			X	X
Pres_abs_B	X			X	
Nbre d'esp F			X		
Densité F	X				
Pres_abs_F			Х		
Nbre d'esp IB	Х			Х	Х
Densité IB	Х			Х	Х
Pres_abs_IB	Х	Х		Х	
Nbre d'esp O	Х	Х	Х	Х	
Densité O	Х		X	<u> </u>	Х
Pres_abs_O	Х	Х	X	Х	
Nbre d'esp Z	Х	Х	Х		
Densité Z	Х				Х
Pres_abs_Z	Х		Х		Х

« Estuaires

- > Choix des métriques
 - · Répondent le mieux
 - · Représentent plusieurs fonctionnalités de l'estuaire

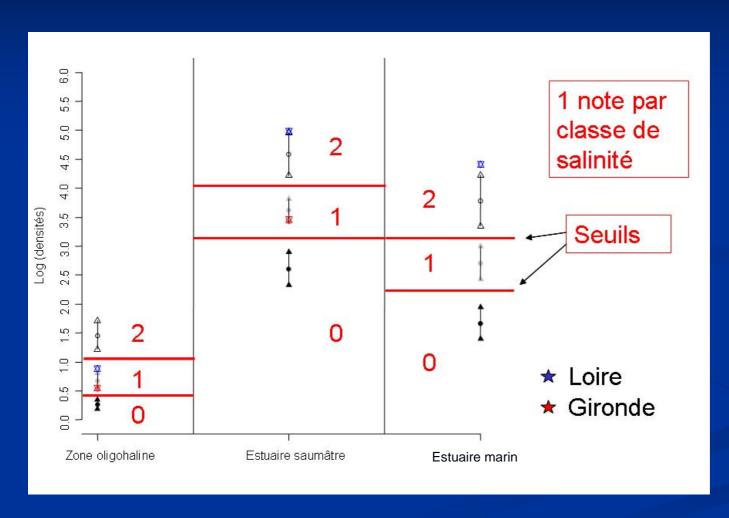
	Indice global de pression
Richesse taxonomique	-
Densité totale	-
Densité d'espèces amphihalines	-
Densité relative d'espèces m. juvéniles	-
Nb d'espèces marines juvéniles	-
Nb ou densité d'espèces benthiques	-
Densité d'espèces omnivores	-

« Lagunes

Nb de lagunes = 11

Réponses aux pressions choix des métriques

Normes points de référence


	saison	sal_class	profondeur	nb_connexion	Lido	Tributaire	surf_syst
RT		Х				Х	Х
densite.pos_totale	Х	Х	Х				
nb_CA							
pres.abs_CA					Χ	X	Х
densite.pos_CA	Х		X	Х	X		Х
nb_ER	Х	Х		Х		X	
pres.abs_ER		Х			X		Х
densite.pos_ER		Х	X	X		X	
nb_FW		Х	X	Х	Χ		Х
pres.abs_FW		Х	X	Х	Χ		Х
densite.pos_FW	Х	Х					
nb_MJ		Х		Х		X	
pres.abs_MJ	Х	Х				X	
densite.pos_MJ	Х				Χ	X	
nb_MS		Х			Χ	X	Х
pres.abs_MS		Х	X	Х		X	Х
densite.pos_MS	Х	Х	X		Χ		
nb_B	Х				Х		Х
pres.abs_B	Х	Х	X	Х	Χ		Х
densite.pos_B							
nb_F					Χ		Х
pres.abs_F	Х			Х			
densite.pos_F							
nb_IB	Х	Х	X				
pres.abs_IB		Х	X	Х	Χ		Х
densite.pos_IB	Х	Х	X	Х			Х
nb_O		Х		Х	Χ		
pres.abs_O		Х	Х			Х	
densite.pos_O	Х	Х	Х	Х			
nb_Z							
pres.abs_Z		Х		Х			
densite.pos_Z	Х	Х		Х		Х	

« Lagunes

- > Choix des métriques
 - · Répondent le mieux
 - · Représentent plusieurs fonctionnalités de l'estuaire

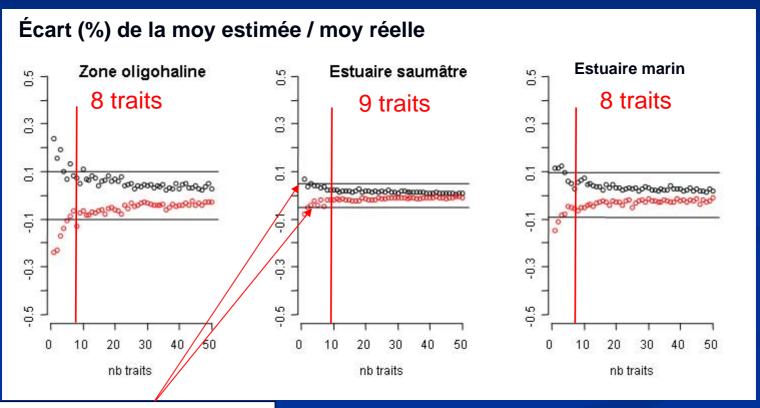
	Pression de pollution	Pression d'occupation des sols
Densité d'espèces amphihalines	-	
Nb d'espèces marines juvéniles		_
Densité d'espèces prédatrices d'invertébrés benthiques		-

«Exemple: cas de 2 grands estuaires, écorégion Atlantique, automne

2 : très bon état

1 : bon état

0 : état moyen et inférieur à moyen


« Seuils

		grands estuaires												
		écorégion Atlantique							écorégion Manche					
		automne			printemps			automne			printemps			
	oligo m éso poly		poly	oligo	méso	poly	oligo	méso	poly	oligo	méso	poly		
CA	inf	0,20	-0,13	-0,30	0,22	-0,16	-0,42	2,34	1,85	1,12	2,38	1,90	1,22	
CA	sup	1,34	0,85	0,26	1,44	0,96	0,34	3,72	3,22	2,39	3,76	3,28	2,54	
В	inf	0,50	0,51	0,37	0,50	0,51	0,37	1,58	1,67	1,48	1,58	1,67	1,48	
В	sup	1,38	1,53	1,31	1,38	1,53	1,31	2,59	2,77	2,52	2,59	2,77	2,52	
MJ	inf	0,07	0,15	0,16	0,14	0,34	0,37	0,73	1,17	1,23	0,89	1,44	1,51	
MJ	sup	0,67	1,10	1,15	0,83	1,37	1,44	2,00	2,42	2,45	2,25	2,73	2,77	
densité totale	inf	1,46	1,46	1,46	1,46	1,46	1,46	2,72	2,72	2,72	2,72	2,72	2,72	
	sup	2,37	2,37	2,37	2,37	2,37	2,37	3,67	3,67	3,67	3,67	3,67	3,67	

			Grandes	lagunes		Petites lagunes			
		printemps		automne		printemps		automne	
	Olig		Poly	Oligo+méso	Poly	Oligo+méso	Poly	Oligo+méso	Poly
	inf	1,05	0,32	2,06	1,02	1,33	0,51	2,33	1,22
CA	sup	1,89	0,96	2,99	1,82	2,15	1,17	3,24	2,03
В	inf	4,32	1,94	3,30	1,09	3,53	1,30	2,57	0,57
В	sup	5,30	2,81	4,28	1,82	4,44	2,08	3,47	1,22
z	inf	5,73	3,60	6,19	4,04	5,39	2,94	5,83	3,32
2	sup	3,78	1,80	4,22	2,22	3,56	1,44	3,99	1,82

•Aquaref 3-4 Juin 2008

«Définition d'un échantillonnage minimum par classe de salinité Exemple pour la Gironde et la métrique juvéniles marins

Écarts tolérés entre les log(densités) moyennes et observées

- Méthode de définition de ce minimum :
 ** bestetren ** (rééabortillement)
- « bootstrap » (rééchantillonnage)

«Travaux en cours de finalisation

Calcul des seuils pour d'autres métriques taille du système x classe de salinité x écorégion essayer en 3 classes

- > Attribution de score ex: TBE=5, BE=3, ME=1
 - tester l'effet de la méthode de scoring sur le résultat final
- Découpage en classe de qualité à partir du score final (définition des EQR = % de déviance par rapport au TBE)
- > Obtenir une note pour chaque système

« Bilan

- Métriques de densités :
 - modèles significatifs et seuils bien définis mais pas de référence (à modéliser en 2008)
 - → 4 métriques de densités robustes pour les estuaires
 - → 3 métriques de densités pour les lagunes
- Travail sur la Richesse taxonomique et autres métriques exprimées en nombre d'espèces
 - Actuellement :
 - Pas de distinction fiable entre estuaire peu, moyennement ou très contaminé à l'échelle du trait de chalut
 - Besoin de tests complémentaires à l'échelle de la zone haline

«Bilan suite

- Recherche de nouvelles métriques notamment en relation avec les pressions hydromorphologiques
- > Intégration au SEEE :
 - Outil de simulation en cours de réalisation
 - Outil de rapportage prévu courant 2009

